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I, INTRODUCTION

This annual report contains investigations on the properties of

nonideal plasmas, which were carried through in thLe period from I ANovember

1978 to 1 November 1979, under ONR Contract N0014-79-0073. Progress

was made in the evaluation of the electrical conductivity and the

thermodynamic functions of nonideal plasmas. Research which was pub-

lished in this period is not included.

Chapter II gives a dimensional analysis of the possible clectrical

conductivities of nonideal classical and quantum plasmas, with and

without thermal effects. Quantum effects are considered since the

electrons are noticeably degenerate for densities n> 1021 - 3elecron ar noiceblydegnerte or enstie n 10cm and

temperatures T 10 4 oK. In strongly nonideal plasmas, y = Ze2nl/3/KT >- 1,

the thermal energy is negligible compared with the energy of the

Coulomb microfields, i.e. such plasmas behave like zero-temperature

systems.

Chapter III presents a kinetic theory of the electrical conductivity

of nonideal plasmas, when the electrons have i) a Maxwell and ii) a

Fe mi distribution of velocities. This work is based on the quantum

mechanical scattering cross section for an effective, shielded

Coulomb potential, which is applicable to intermediate nonideal conditions,

0.1 < y < 10. For moderate degeneracy, n < n, the conductivity

depends on a Coulomb logarithm, but not for complete degeneracy,

27 'Y 1 5 ,
n>' n, where n = 2(2imKT/h2) -- = 4.828 x 1O T

Chapter IV is concerned with a statistical theory of the free

energy of nonideal gaseous (0 -, y < I) and quasi-liquid (I < - y)

plasmas, where yc is the critical Interaction parameter of solid
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plasma. The physical model used considers short apld long range Coulomb

interactions through quasi-lattice interactions and collective electron

and ion waves. The degeneracy effects on the free energy are discussed

for large interaction parametersy.

Chapter V derives the Hamilton function and the canonical field

variables for a many-component plasma continuum with longitudinal

Coulomb field interactions. By Fourier analyzing the canonical

fields for random fluctuations the Hamilton function can be used to

calculate the free interaction energy of nonideal plasmas. This

method has,however, not yet lead to concrete statistical applications

because of the mathematical difficulties associated with the

evaluation of the complex integrals in the multi-dimensional phase

space of the Fourier amplitudes of the canonical fields.

Chapter VI gives a simple application of the theoretical approach

in Chapter V concerned with the evaluation of the distribution function

of the velocity fluctuations in a neutral one-component gas. The

theoretical distribution function is shown to be in agreement with

the observations in turbulent gases.

Chapter VII is an appendix, in which an unrelated subject is

discussed, namely the propagation of stress relaxation waves and their

use for signal propagation and system detection in water.

The main results obtained are summarized in the abstracts of

Chapters II - VII. Other research concerned with calculations of

the electrical conductivity 1) using quantum-field theoretical methods

of solid state physics and 2) considering the effects of the fluctua-

Lio is of the Coulomb microfields on the current transport could not be

written up in time, and will be communicated separetely. The same holds

for the Ph.D. thesis of Mr. A.H. Khalfaoui on nonideal plasmas.



II. DIMENSIONAL ANALYSIS OF ELECTRICAL CONI)UCIVITY

OF NON IDEAL CLASSICAL AND QUANTUM PLASMAS

Abstract

By means of dimensional analysis, novel formulas for the electrical

conductLvity of nonideal i) classical and ii) quantum plasmas are derived

based on the axioms of Dupre. In the penerai case of a nonideal plasnma

with partially degenerate electrons, the conductivity is of the form a =

-A -B 21/Co (T-A en"- /m I/ , where C n I  is a dimensionless constant, A and B

are powers, and yT = e2nl//KT and YQ . e2n 1/3/(f2/mn_2/3) are the reduced

(7=1) nonldeality parameters of the classical and quantum plasma,

respectively (e, m, n are the charge, mass, and density of the electrons,

KT is the thermal energy, and t is Planck's constant). The known

conductiviLties are obtained as special cases of this conductivity

'ormiiia, e.g., the conductivity a - C (KT)2/m/2e2 of the ideal, classical
1 1

plasina,or the conductivity a - C (me6 /. 3 )n -/KT of the high-temperature

metal .
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INTROI)UCTION

In recent years, numerous measurements of the electrical conductivity

of non-ideal plasmas have been reported,--- which were produced by oven

heating 9-) (edium pressures) and shock wave heating ]0)(high pressures) of

alkali vapors and noble gases, with typical pressures ranging from 10

to 105 bars. In spite of the availability of an approximate kinetic

equation for nonideal plasmas, l)which considers spatial and temporal

correlations in the collision operator, satisfactory theoretical explana-

tions of the experimental conductivity data on nonideal plasmas are

missing to date. The degree of the nonideality of a fully ionized plasma

is measured in terms of the (dimensionless) interaction parameter y, which

represents the ratio of average Coulomb interaction (Ze2n1/3) and thermal

(KT) energies (n = electron density, Z = ion charge number, e = elementary

charge),

y=Ze2 nl/ ,KT

In cgs-unit, y = 1.670 x 10 "Zn . The conductivity theory of ideal,

fully ionized P!asmas-- agrees with the experimental data only if y << 1.

For moderately, 0.1 < I ! 1, nonideal plasmas, the ideal conductivity

S 12) 3/1, P
theory yields much too large conductivity value ) o - (KT) /2/M 4 Z 61 A,
where A = [l+(D/Po)2]1/b =D/p for D - po' Po = Ze2/2KT is the impact

0 ~00
0

parameter for 90 deflections, and D is the maximum impact parameter.

The electr-ic shielding length of Debye is related to the interaction

parameter y by

[Z/47(1/12 - 12 n 1/3D = [Z/4rr(l+Z)]I - n -1

The ideal conductivity theory breaks dowan at higher electron densities

because the Debye radius D loses its physical meaning as an electric

shielding length and upper impact parameter when the number of electrons
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in the Debye sphere, ND = 41Dn/3, is no longer large compared with one.

ND and y are related by

ND = (4r/3)[Z/4n(l+Z)]3/2 y-3/2

For typical nonideal conditions, n > 1020cm 3 and T = 104 0K, the Debye

-8
radius is D < 10 cm, i.e., is smaller than the atomic diameter, which

shows that the electric shielding concept is not applicable to proper

nonideal plasmas, y 1. Another reason for the inapplicability of the

Ideal conductivity theory to proper nonideal plasmas is its assumption

of successive, small binary interactions, whereas in reality a conduction

electron experiences many-body interactions for y z 1.

In the following, we apply dimensional theory to the derivation of

new formulas for thLe electrical conductivity of (non-relativistic) ideal

and nonideal, classical and quantum plasmas. In the most general case

of an electron plasma, the electrical conductivity a is a power function

of the characteristic plasma parameters, a - ePm nr(KT)Snt (1 is Planck's

constant). As special cases, the conductivity formulas for the ideal,

classical, fully ionized plasma and the partially degenerate, solid metal

are obtained. The derived formulas for nonideal classical and quantum

plasmas indicate the dependence of a on y, which can be compared with

the experimental observations.

Li'



THEORETICAL FOUNDATIONS

In a system of reference in which magnetic t iolds are absent, a linear

electric current response j =o E exists, provided that the generating

electric field E is sufficiently weak. For any gaseous, liquid, or solid

medium, the electrical conductivity a il/IE is given by

a = (hC 2 /m)r (1)

where e is the charge, m is the mass, n is the density, and r is the

(average) momentum relaxation time of the current carriers. Because of

the large ion mass mi >> m, the main current carriers in a plasma are

the electrons. Eq. (1) holds for any perturbed Maxwell or Fermi distribution

of the electrons.

13)
Dimensional analysis is based on the axioms of vupre.- By axiom

1), absolute numerical equality of quantities a and b may exist only when

the quantities are similar qualitatively. That is, a general relation

may exist between two quantities a and b only when the two quantities

have the same dimension. By axiom 2), the ratio of the magnitudes of

two like quantities a and b is independent of the units used in their

measurement, provided that the same units are used for evaluating each.

In general, any measurable quantity G(the secondary quantity)

can be expressed in terms of those appropriate quantities a., i = 1,2,... '1

(the primary quantities), which affect the magnitude of a. The general

relationship between the magnitude of the secondary quantity a and the

magnitudes of the primary quantities ai is a function of the M arguments

of tht, form

o = f(a 1 , a2' a 3 ... aM) (2)
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Application of the axioms 1) and 2) to Eq. (2) demonstrates that the

14)
functional relation f(ai) is the power function--

N1  N2  N3  (3o = Ca a2 3...a,.i N  (3)

C is a dimensionless coefficient, which depends on the nature of thea

physical quantity a, and can only be determined by means of a detailed

physical model. In many cases, the order-of-magnitude of C is one,

C - 1.

In the most general nonrelativistic case of a thermal quantum

plasma, of which the classical thermal plasma is a special case, the

secondary conductivity quantity a depends on the dimensional primary

q(untities a[ = e(electron charge), a,, = m(electron mass), a 3 = fi(Planck's

constant), a4 = n(electron density), and a, = KT(tLhermal energy).

The dimensionless constant C is in general a function of th , dimensionless0

parameters p/pi of the plasma,

CT = C (Zi, m/mi''''P/Pi'''') (4)

E.g.,Z. is the ratio of the magnitudes of the ion and electron charges,
1

m/m i is the electron to ion mass ratio, etc. The electrical conductivity

u and its primary quantities have the following dimensions V(L = dimension

of length, I = dimension of time, M = dimension of mass) and units U in

the cgs-system:

V[oI = T 1  , U[o] = sec ;

D[e] = L T , U[e] = cm3/,gr/2sec -

D[m] =M , U[m] = gr
-i

D[] = ML2T - I  
, 1M] = gr cm2 sec

V[n] = L , U[nI = cm

D[K*'] = ML2T - 2
, U[KTI gr cm2 sec (5)
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It is recognized that the secondary and primary quantities depend only

on three basic dimensions which are independent, namely 1,, T, and M. !or

this reason, dimensional analysis provides at most three independent

equations for the determination of the powers N., i = 1,2,3,...M in Eq. (3).
1

That is, at most three powers can be calculated while at least M-3 powers

have to be determined by comparison with experiments or by physical

arguments.

Two of the primary quantities are variables, namely n and KT

iK =  .30 i-16 , ' - 0K

(K =1.380 x 10 gr cm-sec 0 K), whereas the remaining three primary

qunite x110 .12 1/2 -
quantities are elementary constants (e 4.803 x 10cm gr sec

1-28 1-27 -

m = 9.109 x 10 gr, ti = 1.054 x 10 gr cm2sec).

The fundamental equation (3) is applied below to the determination

of the electrical conductivity of (nonrelativistic) nonideal, classical

and quantum plasmas, in which the electrons are responsible for the

electric current transport. To illustrate the results, they will be

expressed in terms of the interaction parameter y for Z = 1 and the order-

of-magnitude of fundamental electron energies:

= Ec/E = ne 2 / KT , (b)YT T

= KT ce(7)

EC  = e2n 1 -, (8)

Eo Q -hz/mn - 2 / 3  
(9)

E Q Is the order-of-magitude of the quantum potential energy Q =

-(-N?/2m)V2p112r 12 of the electron in the plasma. EC and E are the

Coulomb interaction and thermal energies.



CLASSICAL T=O PLASMA

In a classical (ho-o) electron plasma, in which the thermal energy KT

is negligible compared with the Coulomb interaction energy, the conductivity

depends on the dimensional parameters e, m, and n. By Eq. (3),

a NC emN 2 N 
N  (1)

Hence ,

4, " )N IMN2,-N (11)

I~e.,

(3/2)N, - 3N = 0, (1/2)N1 + N2 = 0, -N I 
= -1. (12)

These arc three independetL equations, which determine the powers

N , No, and N3 uniquely,

N N, 1 = :1 (13)

Bv Eqs. (10) and (13), the conductivity of the zero-temperature,

classical plasma is

O = C en l/m 1b (14)
a

Eq. (14) indicates that o = C06a /(47) / increase.r proportional to n1/2

I/
where w = (4lrne 2 /m)'' is the plasma frequency. This result was firbt

15) 16)
derived by Buneman-and later by Hamberge- and Friedman- for an

electrostatically turbulent T 0 plasma by means of semi-quantitative

physical arginicnts, which give C,) 11? (in1 / n) / for Z 1.

II I I I I III i . . . . ,llill * '0i l
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CLASSICAL T>0 PLASMA

In a classical (h)o), thermal (KT>O) electron plasma, the con-

ductuvity depends on the dimensional parameters e, in, n, and KT.

By Eq. (3)

a = C eNl mN .nN 3 (KT)NI (15)

Hence,

T (L/M/2T1)N1MN2L3N3(ML T )" , (16)

i.e.,

3N- 3N 3 + 2N4 = 0, 1N1 + N2 + N, = 0, -- N1 - 2Ni, - - (17)
2

These are three independent quations, which determine three of the four

powers in terms of the fourth,

N, = 1 - 2N, N2 = - , N 3 = - 1N, N, = N. (18)
2 3

According to Eqs. (15) and (18), the conductivity of the classical,

thermal plasma is

2-2N -1 -N N
o = C e M n 2 (KT) (19)

O

Collecting of powers of N reveals the dimensionless group contained in

Eq. (19), and condenses the conductivity formula to

'T = C (KT/e2n!/3) N en1/2/m/2 (20)

For an ideal (classical) plasma, = (nce '/m) cannot depend on n
-1

since T n for binary e-i collisions. Hence, a and N are for an

ideal ', plasma

C=C (KT) 3/ "e , N = 3/2 , (21)

in agreement with kinetic theory-- , which shows that C =

I/.
3/4(21T) 2ZCnA - 10!. For N = 0, Eq. (20) redtice:- to a of the classical

T = 0 plasma, Eq. (14).
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For a nonideal (classical) plasma with v-body interactions, we

have T , n and o = (ne2lm)T ' n , with v > 2, i.e. N = 3u - 9/2 - 3/2.

Thus, we find for the conductivity of nonideal, classical plasmas

o = CoTen12/m /12 N 3/2 , (22)

where yT= EC/ET is the nonideality parameter defined in Eqs. (6) -

(8). Eq. (22) expresses the important result that the conductivity of

a nonideal, classical plasma, a =  C YTN W/2I1/ , decreases proportional to
a 1 p-N

YT with increasing nonideality 5,T since N > 3/2. The exact value of N

can b(. determined by comparison with experimental data.

is
I
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T = 0 QUANTUM PLASMA

In a completely degenerate electron plasma, ET ,< EQ the conductivity

depends on the dimensional parameters e, m, n, and b, but not on KT. By

Eq. (3),

a C eNl mN2 NhN4  (23)

lien ce,

T-  (LAM 1b T-I) NIMN2L-3N3(ML2T-l)N4 , (24)

i.e.,

N- 3N 3 + 2N 4 = 0, 2N1 + N2 + N4 = 0, -N - N4 = -1. (25)

These are three independent equations, which determine three of the

four powers in terms of the fourth,

N] = 1-2N, N2  N, N3  2 + 3N, N4 H 2N. (26)N = I-N N2  - 2 2 3

Substitution of Eq. (26) into (23) yields as conductivity of the

completely degenerate electron plasma
_hn_/_ N 1/2/ I/2

o = 0 ( /3)N en m 1 (27)

For N = 3/2, Eq. (27) leads to the conductivity of a solid metal

aL T = O,

a = C ri3n/e2m2 , N = 3/2 , (28)

17)
where - C Z . For N=O, Eq. (27) reduces to a of the classical

0

T=O plasma, Eq. (14).

For complete degeneracy, ET is negligible compared with E - mtF 2 ,

where V F  (1 /m)n is the Fermi velocity. For ihis reason, Eq. (27)

is rewritten in the form

SCb y en /m (29)

where

y E/E = e2n //(4 2/mn'3) (30)
Q C ~Q
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is the nonideality parameter of the completely degenerate electron plasma

for Z = 1. Since N = 3/2 for the T=0 metal, it is to be expected that

N>O for the completely degenerate electron plasma, i.e. its conductivity

decreases with increasing nonideality yQ, Eq. (29). This formula is

useful for the interpretation of conductivity data of completely

degenerate electron plasmas, with N as adjustable parameter.
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TO QUANTUM PLASMA

In a partially degenerate electron plasma, ET  E the conductivity

depends on the dimensional parameters e, m, n, KT, and -. By Eq. (3),

a C 0NNI mN:nN3 (KT )N tN5 (31)

Hence,

-!~Nj 1 N 3  - N N
= (I M12T - )NIMN2L- _ (ML2T )N (ML -  (32)

7N, 3N 3 + 2N 4 + 2NS = 0 ,

N 1 + N2 + N4 + N5 = 0 , (33)

-N 1 - 2N 4 - N5 = -1

These are three independent equations, which permit to express three

of the five powers in terms of the remaining powers,

N,= I- 2A-2B, N2  -B, N3 - A + !
2 2 3

N4  A, N 5 - 2B (34)

Combining of Eq. (31) with (34) gives for the conductivity of the

T>O quantum plasma

/ KT A (T2) )AB en 1/2/ml/2 (35)

where A and B are powers which can not be determined by dimensional

reasoning.

For A = -1 and B = -3/2, Eq. (35) yields the conductivity of solid

metals at temperatures T>O,
me 6 n 1/3

a =C - - , A= -1, B =-3/2, (36)
0 jH3 KT

where 7)c Z- /3 . Eq. (36) expresses the l/T- lax---7) of the

metallic conductivity at "high temperaLures".

Eq. (35) contains the dimensionless groups yT and yQ, which permit

to rewrite the conductivity formula a:;

U= Co YTA YQB 1/2 m'2. (37)

" I Q
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Since A -1 for T>0 metals [Eq. (36)] and B = 3/2 for T=0 metals[Eq. (28)],

one can speculate that A ' -1 and B>O for nonideal, partially degenerate

plasmas. A and B can readily be determined by means of conductivity

measurements for nonideal quantum plasmas. The theoretical determination

of the nonlinear dependence of o on yT and yQ in Eq. (37) from a

physical model of more than two-body interactions is left to future

research.

In conclusion, it is noted that we have derived new conductivity

formulas for nonideal classical T>O plasmas [Eq. (20) or (22)], completely

degenerate plasmas [Eq. (27) or (29)], and nonideal T>O quantum plasmas

[Eq. (35) or (37)]. These formulas can be used to interprete conductivity

measurements on nonideal plasmas. Once the still undetermined powers

N, A, and B are known empirically, it should be possible to develop a

conductivity theory for nonideal plasmas which provides an explanation

of the yT and yQ dependence from first principles.
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III. ELECTRICAL CONDUCTIVITY OF NONIDEAL PLASMA

ABSTRACT

The electrical conductivity of fully ionized, moderately nonideal plasmas

with interaction parameters 0.1 < y s 1, where y - Ze2 n /3/KT is the ratio

of Coulomb and thermal energies, is calculated for displaced Maxwell and

Fermi electron distributions, respectively. The electrons are scattered by

an effective Coulomb potential *(r) - Zer- 1 exp(-r/6), with 6 - (3n/4nZ)- 1/3

the mean ion distance, which considers binary (0< r : 6) and many-body

< r < -) interactions. It is shown that the resulting conductivity formula

is applicable to densities up to four orders of magnitude higher than those

of the ideal conductivity theory, which breaks down at higher densities

because the Debye radius loses its physical meaning as a shielding length and

uppr impact parameter. In the limit of complete degeneracy, the conductivity

formula reduces to that of a solid metal.

.. .. ..4:. .. .. . . . .! I . .. _._ g' _'', .
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INTRODUCTION

The theory of the electrical conductivity of fully ionized plasmas I- 3) based

on the Boltzmann equation, the Fokker-Planck equation (derived by expanding the

binary collision integral for the small, successive velocity changes of

Coulomb scattering), or the Lenard-B. 1escu equation (taking into account the

dielectric properties of the medium) is in agreemknt with the experimt-ntal data

for rarefied hip'h-temperature pl smnas, y<1. The interaction par;1%,Ltter is

defined as the ratio of (average) Coulomb interact ion (Z2 n 1 / 3 ) And thyt mal (iZT)

energies (n is the electron density and Z the ion charge number),

= Ze 2n /3/KT = 1.670 x 10- 3Zn /3/T

in cgs-units which will be used throughout. The conventional transport calcu-

lations 1- 3 ) give an electrical conductivity of the form o - (KT) 3/2/m 12 e2ZnA

for classical ideal plasmas, where A = [1 + (D/po) l)/po0 for D-po. 1) is

the maximum impact parameter (Debye length), D = [KT/4fe (1 + Z)n] /2
, and p0

is the average impact parameter for 900 deflections (Landau length), P0 = Ze 2 /2KT.

10The condition, A>>l or ttA-1.0 is satisfied only for not too low temperatures

T and not too high densities n.4 ) Conductivity formulas with this Coulomb

logarithm break/down for large interaction parameters y and densities n, since

the Debye radius

=Z/4ii(1 + Z)1/2 -1/2 -1/3

becomes smaller than the atomic dimension 10- cm and, thus, completely l(. cs

its physical meaning as an electric shielding length and maximum i7 pact parameter.

4 0 -8 20 -3
E.g., tr T = 10 OK, y>10 and D<10 cm if n>10 cm .Moderately nonideal

plasmas with y-l are read ily generated through shock wave compression and exhibit

conductivities of the order 0 101 - 10 2mho/cm 5 - 6 ) , which are much smaller than

those which would be obtained by applying the conductivity formula for ideal

pkr:;in:i. in the nonlideal regime.

- _ ___
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Al though there are some bul k measurements of the v I ectrica ] conductivity

5-8)of nonideal cesium and noble gas plasmas available , theoretical explanations

of these results are still missing. The momIen tum and nervy transport in

weakly nonideal plasmas, y <<1, was trented by Wi lhelm9 ) by meanis of an

experimentally shielded Coulomb potentia], which permits to consider not only

short-range binary (r 5 1)) but also I ong-range e:ily-body (r ' D) interactions. This

interaction model jas used shortly afterwardS by Rogov 1( ) for the calculation

of the conductivity of weakly, nonideal argon and xenon plasmas with Debye

shielding.

For moderately nonideal plasmas, 0.1 <y : 1, various phenomemlogical approaches

have been used to extend the conductivity formula of ideal plasmas, e.g., Goldbach

et al 11) multiply the Debye length D with a free parameter x(p)which is chosen

to match the experimental data, i.e. to compensate for the too rapid decrease of

1) with pressure. A kinetic equation has been proposed for nonideal plasmas

1.2)
by Klimontovich 2

, which considers spatial correlations and temporal retardation

in the collision integrals. This equation has not yet lead to transport

coefficients because of the mathematical difficulties associated with its solution.

In the following, the momentum relaxation time aind the electrical conductivity

of (i) cl ,,;sica] and (ii) degenerate plasmas i:s calculated for intermediate non-

ideal condi tions, 0. 1 < 1 I. For this region of interaction, the concept of

l)ebye shielding already breaks down since the number of particles in the Debye

sphere 4rD 3/3 is no longer large compared with one for y > 0.1. This difficulty

can not be remidied by replacing D with the quantum mechanical shielding length

(even when thermal effects are included)
13 )

1/2 1i2 3n 1/3DF = (Tao/k F ) , ao =me2 , kF=(87T)

which is of the same order as D in most higi pres ;lirc plasmas, e.g. DF 10 - 8 cm~ F

for = 120 m-3
lotr n = 10 20cm- 3. From the definition of th,. mean p~irticlc distance, it is clear

that the man ion distance 6 -1/3 separates the region in which al el'ctron

-7=
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experiences few - body encounters (r 5 6) from the region in which an electron

experiences many - body interactions (r > 6) in a nonideal plasmas, as long as

S> 10-8 cm (ni < 1024 cm- 3 ). Thus, the mean ion distance evolves naturally

as the characteristic interaction distance for nonideal plasmas, for which

Debye and Fermi shielding fail.

We calculate first the electrical conductivity of plasmas with (i) Maxwell

and (ii) Fermi distributions of the electrons, when all ions have the same

charge number. Then, we generalize the conductivity formulas for plasmas

with several ion components of charge number Zi , i = 1, 2 ..... The electrons

are assumed to be scattered by the exponentially decaying Coulomb potential

2 cr exp(-r/6) which takes many - body interactions at distances r > 6

into account. The considerations are applicable only to moderately nonideal

conditions, 0.1 < y ! 1, up to densities n << 1024 cm.

24 -3
For solid state densities and larger densities, n Z 10 cm , we have

6 < 10- 8 cm and the chosen interaction potential (r) is no longer valid. For
94 -3

densities n > 1024 cm , the Coulomb field of the ions is changed by polari-

zation of the bound electron cloud, so that the free electro~is are scattered

as in solids by the ions. For this reason, plasmas in the solid phase are

not treated herein.

L
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PHYSICAL FOUNDATIONS

The eIectrical Condu(ctivity 0 of any j,,as-ou:;, liquid, ()r solid medium, in

which the electrical current transport is doe to electrons, is proportional

to the electron density n and the relaxation time T of the average momentum

<mv : of the electrons (m is the electron mass and e - 0 is the elementary

chari,,e)

o = (ne2/m) (1)

Lq.(l) reduces the calculation of u to the evaluation of i. The relaxation time

r is determined by the scattering potential i and the (classical or quantum

statistical) kinetics of the electron gas in the electric field.

In proper nonideal plasmas, the region 0 < r 5 6 of binary and few - body

col lisons and the region 6 < r < - of many - body interactions are bounded by

the mean ion radius,

3 1/3(4Tr5 /3)n i = 1, 6 = (3Z/4nn) / (2)

since electric Debye shielding exists only for weakly nonideal conditions, y << 1.

For this reason, the effective Coulomb potential of Z times charged ions is in

plasmas of intermediate nonideality

-I
(r) = Zer exp(-r/6), 0 < r < 0.1 < y . 1. (3)

Eq. (3) is no longer applicable to plasmas with densities comparable to solids. It

contains the binary and few - body collisions at distances 0 < r < 6 and the

many - body interactions at distances 6 < r < ,,.

The differential cross section o(0,g) for the scattering (g + g *) of

electrons by the potential (3) is in the center of mass system1 4 )

o(0,g) =(Ze 2/2m)2 /g 2 sin2 (0/2) + u2] 2  
(4)

wher e

0 =(gg*), g = v - v., g* = - v.* (5)o V e e I

and

u = -i/2m6 (6)



The elect ron and ion yelbC it. ics o e nodav ;11 t 11 Lr tOW ltera iol alrc d('£ iia1ted

by v .and v*. respec tivlyIy. Th,- ,;pf,(,(l C') c-mrcspondts to a de B Cos i c

Wave Itength Of Lte Order X - t(. 'tr u - 0or P', E. (4) reduces Lo t ik

Rutherford cross s'ction0.

TheL scattering cross section J(,)is str1CL 14 valid only ini the Born

a pproximat ion Coot rary tO What: Oflc in ight expect inl1) generalI for- thte 1 at t-cr

Eq. (4) describes in good approximation the scattering in the exponenvtially

decatying potential (3) because of thc pecul iarity of the Coulomb interaction.

Vhc CXoulomb intera t ioll - 1 /r hasi Ow ucni JCj 1 propety tlia IL the Born app roximat ion

and the exact wave merlianica 1 approach give the same scattering Cross Sectil 1on

(id~nt iCAl with the Rnithcr ford tormuLa) . In tini regio)n 0 < r < 6, the

interaction J)ot-enLkil (1) is pract-ira 111 Con! ombi c, and thus Lte Born -Lppi:,xi-

mlatijoni gives t le cor rec t SO ILut! 1. Ii t h- region 6 < r < -, the LInteract ion

potentLLot. (1) is eL lect ivelOy screened, iLete born approximation pivex- tfI

correct soluotion because (r) is sinzil I. In the trios ith 01 zone r '~,the

110o11nappro:ximat ion holds fairly we:1 t I i Crio;0tC~ it

The relaxation timle Lis Olbtah b-I h'- ViiOat ian[ oif the Col I s i PL Lra 1is

for the e lectron montum my for the ( i) r lass irail and (ii) degeneratet, p l1a

respect ively. Both in Lte cnsu:- ot ;mascaIad F-rii sta-t isticea, the pirticle

yelocities %, .and \'* before ao"W Iftur the ;tL racL ion) 11c tnt erre L'ked by' the(
e,t C,1

coaservat-ion equations for mnomen tum and energ"y.



(:uNlDtCT IV ITY OF CLAxSSI CAL P1 ALMA%

Acecord ing to kintic theory , lii L1\'or; I,- ilil It imi (1kejiI.; It( 1 11(. V < -V

excl.iiged per on it tLime between e'lect roiis and i ois, interacL mni , With the Coulomb

poteintial I 1 ), is lgivun. by the col I -iion inlte)',ral 1 or my whichderni.-

0 .1
-111 tv> -<

fa f..f V I (00 ) V.(v) - (v(') f(v) *,(0g d:,, dvdv. (I (7)

Tl'l :;eit terin , cross scct ion c (t,g) is givt'ii in Lq. (L) III( LI, s ol in :ingb, clcbiii

iS dt1 sill 0 LI; d InT response to 11n 'api 1 d & leeLcIcj I i( Id E, Lhi e'Ll-rells

.111dl ions dr-ft with v Iii~ c nd <V.', 00 LIIlat choir dvstri'ution ein

,1rc( d isp 1 aced Maxwko I ilaos

13/2) (1
(v n. (II /2iKlT ) X txl- m~ ) t'1KV( !-L = ,i.(8

EqI.(8) represents a 5-1niet -approximat ioni t LII, nonuqii iriui ofhi au tile

Boltzmnann eqluation. I The pert-Urbations ot t (V) dUe to Viscous Strus,-:3 and

heat flIows are nieglec ted in Eq. (8) , since they yield only corrL C t itn Tol

lijiler oirder to Lb:, coldirL iv ity.

FTln col is ionl i I1Legral (7) 1., it)'rt / by ,1VN ( 1AL- 111)(ke Iol for 'AIIaOIliC

drift velocities, - - Wiht<'Ll,11 J

(Cn = I II . (m C + il ) II i L Il , T 1 m ('1 IC )i + (T / .)

Fo I ti ) cr s on ic dirilf L v I oc i Ltic, , i neair ()I',ls j)2C.' het 1)~ Currut111 d3 !1ity

-~ 9)
nrlil electric Fiteld E (100 no lo10 e nor.'21 . Hie Lcr0 11 l I C r I a-;:, :. i L I- L S

,iveui by: 7

3(2KT/:imi) 11 i 9

2- 2

0 '(A'K) 11i

- 2lK /I' 8111 ) I *-
2

3
3

Z (12)
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and

E (x) 0 r -'it x - (13)

is tlie exponential integral of order one (1' = 0.477 . . . I :ler'!i constant). 18)

The latter satisfies the inecluijties, for x 0,

it(]+ 2/x) el(x) - ' 1 + /x), ( + x) - : (A) x (14)
211

-1
Accordingly, Eq. (1 1) gives forvil Iy for sma I i and large ,,ument: =

L 6 L A , A >' 1 (15)

L A , A < 1 (16)

Combining of Eis. (9) - (12) with El. (1) ,,'i ld.; Lth, dt-sir, d e!ectric

conductivity of the classical plasma of irintl rmdiate nonideility, 0.1 < I 1:

o 3(KT) 3/2 (2 -am) 12 21 (17)

wl ie re

I, = t'iz[8nff -(411n/3Z) -2/3KT > 1, (18)

-2 - 2/31, = 8m -2(4,n/3Z) KT , ". (19)

by Eqs. (15) - (16) .It is instructivw t, reqrite 1" in ter:, of Lhe thermal and

quantum potelnt ial eergies of , ec ct roil,
') .)

A 8E T /E Q , ET = KT, E = I' /m, , (20)

Vic conducLivty formula (17) differs from tiw conductivity of the ideal

1)lasma 1- 3 ) iniiinly through Llhe ter-M L. The latt vr ha , t- ,, form of a Coulorb

lo ,arlthm, 1, = eki A , for A' I , i .,,. for al I dt,; l~q i .,,; i n rd temperattures, T for

which the pl:sma is nondcgL'nFrLu, F, ' E 1 . 0 NImlerica I y,

A = 3.482 x 10 11(n/ )-2/3 ' (21)

Vic corresponding a guio l - 2KT l//,, of tieL id.il 1 'l rrnh Iogaritlm 1- 3 )

4 - 1 I ', /"I .404 1 Z 1 +" (22)



Table t compares A of the non:ideal plasim; and ' D of tile ideal plasma for large

densit its n and tile typical teimperature T I04 ,K. It is .;fen thnt fli ''D of

18[ -3
t lie idt-!L plasma is unlacceptably sma I I fOr d(. si Lies n _ 0 cm , whereas

'i 1 I o tile nollideal plaslla a has 17to;1-;itlI(' V,.1110e. tip Lo d(ei ;ities n < 1022 e-J

if T = 10 IK. '1ic, ,nClut LiviLy formula (I Y) I,)ld:;, thertefore, for densities n

up to 4 orders o l ( I )f mag-i tide hig;her t i ln tiv T , ThiCt iviLv formili a of the id,,al

l 1sm . ,q. (17) i.S iot appl ir;abl , to ii T I r o ,,1; -, ,vli h , .c I , L.e.

t" E , Eq.(20), s i ce in this ease the I.. ,,:; wolld b. d(Ien.rat

4
TABLIE. I : A aind A, versu, TI F CI' -I ( K arid Z = 1.

__ 1)-3 1 0-22

3 2 2 0A 3.482 x 10 1.616 x 10 0.750 x 10 0.348 x 10
1102

A 1.035 x 10 1.035 x 1.035 x 10 1.035 x 102

The conductivity formula (17) becomes in cgs - units or practical. units

(9 x 1011 sec = I mho cm-1

,, = 1.394 x 108 T3 /2 /Z fn A [see - i = 1.549 x 10- 4 T 3/2/Z ( A [ml, cm- ] (23)

where , is given in Eq.(21). Accordingly, if T = 104 .K and Z = 1, o = 1.899 x 101

-1 118 -3 20 3
mlho cm for n = 10 cm ard o ' '.097 x 1(01 mho c- for n = cnii



CONDUCT[VITY O1 QUATUM 'lASMA

The electrons in a pln sln:, bcculil degeneu'i., , 
' thir thermial l) eBrg ie

wave len ;th is larger than the mean clectr,,n .li jt. ine, ;.,.. it Insitis (l,=2 Ii)

n 2(2nm KT/h2)3/2  4.628 x l01 T3 /2  (24)

21 -3. g.* fur '1T = 0 "K, dcgeneracy requires n x (.) An . ln view of their

large mas, ni '> m, the ions can be. Irea tcd Is clissier,1. The momentum relaxaLion

time i oI the degenerate electron gas is detc rimined by the quantum statistical

-" 19)
co I [is ion integral for mv e

- nmii(<v " - I
e1

- 1t 3 -1 +3

if..."Ve {re (,) f( ) 61 - 1)-,9 F (Ve)] - fe( ) f.(,,) I I Yr 'I)
Ceei2 e Q e 1i 2 ee

x g j(',g) d dv dv. (25)C 1

where the scattering cross section o(n,g) between electrons and ions is given by

Eq. (4). The solutions to the velocity di,;tributions are the displaced

Maxwe[lian (8) for the ions (s = i) and the 5-moment Fermi approximation for the

elect rons,

3 I -1 - .)f (v C 2(0m1h) t + exp[.1n(v - v -j/K'' i (26)
C i2 e

The ciemica l potential 11 i(n, T) -is de termined by the i.ntegral luncti onal

n = (c; ii) deee e

Again, a linear response j =E exists for small drift velocities <v .>

or weak electric fi, lds E. integration of Eq.(25) yields, after standard

approximations, for the relax-ition time of the degenerate electron gas:

-1 8 2 1/2 e 4 Z 2ni Q

=3m m (KT) 12 1(n ,T) (27)

whore

. 0 ) (28)

16 m ,Yin -2/32 ' a- i2 --3) KT Q(n,,') (29)
Q 3 2 3RI

I77
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and

3 (1 + - + ... ), n < (30)
n

R(n,W) 4 (1 + 2- 2-n + ... ) , n(T ) , (31)

but

5123l/2 n.-4/3
3 37T n 5ii 311 (

1 + --12 -- + . , n n(T) (32)
L3 11

R(nT) 2 . /2 1 -4/3 (33)
1"3 l/ [IL1 + --4---'--- - + ... j, n-' ii(T). (3

4" n

Equations (30) - (31) and lEqs. (32) - (33) result from , xpinsions ,f tOh Fermi

dis;t ribution (26) in the coll.ision integral (25) for d,_ensjities n << n(T) and

n 1-. n(T) , where

3) /2
n (T) = 2(2,im KT/h ) (34)

is the critical density which separateS the degenerate and non-degenerate regimes.

These series are based on expansions of the normalization integral of Eq.(26),

which gives the chemical potential p explicitly as a function of n and T,

i{l [1 + 2- () + (1 - 3-2)(n) + ... 1, n(T), (35)
KT n n 4

1/2 2 1/2 4 1/231 11)2/3 7 l -i ( _ n 4/3 O 3' n -8/3K " f2- (-4 3- - 4 C. TI 4 ...1, n n(T) (36)

Combining of the conductivity formula in Eq. (1) with the relaxation time of

Eq(27) yields for the electrical conductivity of the degenerate electron plasma

of intermediate nollideality , 0.1 < T 1:

3(KT) 3 /2 R(n,T)
2(37)

8(2m) 1/2e2Z L

whe'cre I. is given by Eq. (29). In the liiti 1111 ,:tses of large and small values of

2

33
I, ' l A ( , ) , .- I , (38)

S AO(, 't,) , A. 0< (39)
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since A = (2/3)AQ by comparison of Eqs. (29) and (12).

For n/n - 0, Eqs. (37) and (38) reduce t-o Lte classic al conductivity, Eqs.

(11) and (18), since R(n,T) 4/v/l and Q(n,T) ' 3/2 for n/n - 0 by Eqs. (30)

- (31) . On the other hand, Eqs. (37) ;ad ( 39) .ivc in t1,, I imit of com plete

de0geneLracy, n/n >-

9h3n (40)
= 9 2 (40

2 rn>e Z ,

where

3(3)1/3 Z 2/3

LQ 40 27 3

by Eqs. (32) and (33). Euqations (40) - (41) combine to the conductivity iormula

._ r2 (2r__i 3 h 3 n

.5= 2r 2 a e/3 h 3 5/(42)

3 (3/22 z 5/3

Equation (42) agrees with the expression for the conductivity of a low temperature

20)
metal .--

For numerical evaluations, Eq.(42) is stated in cgs units (sec 
- ) and

practical units (mho cm ),

4.498 x 10-6 Z- 5 / 3 n [sec - 1 4.998 x 10- L8 Z-5 / 3  -mho ci (43)

4 3
Accordin ly, o 4 x 104 mho cm'- for n1 10 cm - 3 and u 5 x 10 Illho cm- 1

24 -3
for n = 10 cmi , if Z = 1.

I



GENERALIZATION

Nonideal plasmas exhibit frequently not orl> a high degree of

single ionization but also multiple ionization, due to lowering of

the ionization energies by the internal Coulomb fields, and over

lapping of the atomic wave functions at sufficiently high pressures.

In an electrically neutral plasma with N species of ions (i) of

charge 7.e and density ni, the electron density n and entire ion

density n(i) are related by

N N
n = Zn i l n(i) = n. (44)

i~l i=l

The characteristic interaction radius 6 o1 the Coulomb fil-ld of each

ion is within the many-component plasma

6 = [4Tn(i)/3] - 1/3 (45)

Since the probabilities for interaction between the electrons

and ions of type i = i, 2,...N are additive, the momentum relaxation

time of the electrons is

N -1
- = T (46)

i=l

where T . is the relaxation time of the momentum exchange of the1

electrons with ions of type i.

Classical Plasma. By Eqs. (1), (46), and (9)-(10), the conductivity

of the many-component plasma with Maxwell electron distribution is

in the Lorentz approximation

3(KT)/2

2 (2i m) 41e 2 (n /n)7 i .
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1. is given by Eq. (11) in general, and the approximations (15) and

(16) in the limits A > I and A - 1, respectively, where now

A = 8KT/(i 2 /m3 2 ) . (48)

Quantum Plasma. By Eqs. (1), (46), and (27), the conductivity

of the many-component plasma with Fermi electron distribution is in

the Lorentz approximation

3(KT) 3/2 R(n,T) (49)

8(2m) N (ni/n)Z'L.1
i l

LQ is given by Eq. (18) in general, and the approximation! (38)

and (39) in the limits A. I and A , respect iv(.ly, whee

now

AQ = (16/3)KT(n,T)/(r12 /m6' ) (50)

For a plasma with only one ion component, we have N = 1,

Z7 = Z, n /n = Z , and Eqs. (47) and (49) reduce to the previous

formulas (17) and (37), respectively. In case of the many-compnent

plasma, not only the electron density n but also all ion densities ni

have to be known for the evaluation of the couductivity.

Mi
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IV. STATISTICAL THERMODYNAMICS OF NONIDEAL PLASMA

Abstract

A quaLtm statistical theory of the free energy of a nonideal electron-ion

pla:;ma Is developed for arbitrary interaction parameters 0 - y < y
c

= Ze. nI/KT is the ratioof mean Coulomb interaction and thermal

energies), which takes into account the energy eigenvalues of (i)

the thermal translational particle motions, (ii) the random collective

electron and ion motions, and (iii) the static Coulomb interaction energy

of the electrons and ions in their oscillatory equilibrium positions.

From this physical model, the interaction part of the free energy is

derived, which consists of a quasi-lattice energy depending on the

Inte.raction parameter y, and the free energies of the quanitized electron

and ion oscillations (long range interactions). Depending on the degree

of ordering, the Madelung "constant" of t he plasma is a(a) = a for y >> 1,

( a for y > 1, and ot(y) -y / 2 for y , where a - 1 is a constant.

The tree energy of the high-frequency plasmonv. (electron oscillation,) is

shown to be very snall for y > 1, whereas the free energy of the low-

frequenct plasmons (ion oscillations) is shown to be significant for

> 1, i.e. for proper nonideal conditions. For weakly nonideal plasmas,

y -. 1, both the electron and ion oscillations contribute to the free energy.

1l111s, novel results are obtained not only for proper nonideal (y > 1)

hut also for weakly nonideal (y - 1) plasmas. From the general formula

lr the free interaction energy AF of the plasma for 0 < - y" c, simple

lc lalyt IL'al expre;sIons ar.: dctived for AF In the limiting cases, y >> 1,

1 ' , 'fld y --< I.



INTROIUCTl I ON

In the classical work of tebye and 14tieckcl. onl electrolytes, tile total

Co ltomb interact ion energy is czlicil ated from thLe continuum theoretical

piture of every ion interacting with its ,urround ing space charge Cl]oud.

Using more sophisticated methods, similar res"ults were obtained for

weakly nonideal plasmas (y-l) by Mayer 1I (cluister expansion), Ichikawa 2

(collective variable approach 3), Vedenov and I~zrkin 4(graphical density

expansion), and Jackson 5(huydrodynamic cent inium interaction model).

Based on different methods and approxiimat ions, investig-Lations of moderately

(y >1) and strongly ('y>> 1) nonideal plasmas were given by Berlin

6 7 8
and Montroll , Theimer and Gentry , Ecker and Kroell , Ebeling, Hoffman

arn Kelbg ,and Varoev Nraan Viinov respectively.

In spite of differences in the theoretical :ipproaches, the leading

terms of thle analytical results for proper nonideal plasmas (y- 1)

give essentially thle same formula for the free plasma energy, AF/NKT =-ay +

biny + c, due to Coulomb interaction, whej-e y = Ze 2n 1 /3/KT is the

ratio of electron - ion interaction energy and thermal energyand

a, h, c: are constants depending on the reCSpective approximations

and assumptions. The thermodynamic functions of strongly nonideal

plasmas (y.>>l)wei-e also determined with the hel~p of Monte Carlo and

11 12 13
computer methods by Brush, Sahlin, nnd Teller , Hansen , IDeWit t

14
and Theimer , respectively. Although computer methods provide limited

physical insight, they are useful for checking the quantitative validity

of analyt ical theories

At sufficiently high electron densities, for which ' > 1, classical

stait i:; ical 'Theories fail due to- thermodynamic fiu;taiiity ,which is

AAA
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inhibited by quantum mechanics. The classical plasma pressure would collapse for

Y > 1 dua to the negative electron-ion interaction energy, whereas in reality

the prebsure remains positive in a plasma due to the Fermi pressure (exclusion

principle) of the electrons. For these reasons, we present herein a quantum-

statistical theory for nonideal plasmas based on concepts similar to those

16)
used by Debye for solids 1

. ThQ application of this model to proper

nonideal plasmas (y > 1) is justified since a plasma exhibits a quasi-

crystalline structure for y > 0.1 before it undergoes a diffuse transition

into a solid, metallic state at a critical value yc. The roll of the

longitudinal phonos of the Debye theory is assumed by the quanta of the

plasma oscillations (plasmons) in the case of the quasi-crystalline plasma.

The theory is also applicable to weakly nonideal conditions, since the quasi-

lattice energy reduces for weak ordering, y <- 1, to the free interaction

energy of weakly nonideal plasnas.

The theory to be presented takes into consideration (i) the energy

eigenvalues of the random, collective electron and ion oscillations and

(ii) the static Coulomb interaction energy (quasi-lattice energy) of the

electrons and ions in their oscillatory equilibrium positions. Thus,

all significant long and short range Coulomb interactions are considered.

The results are applicable to arbitrary nonideal plasmas, 0 < Y < Yc where y c

is the critical ordering parameter at which a phase transition into a

solid metallic state occurs.
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'ii''; I UAI. -Ft)Uf' I)P.P It 0L

Subject of the theoretical considerations are quasi-homogeneons high-

pressurL, pl asmas consisLing of ele('trons of charge -e and density n N/V and

ions )I charge +2ec aod density n/ Z- N/ZV, withL typical densities ii the ranige

20 -3 24 -3 3 4o
1 cm < n " 10 cm and temperatures t the order-of-nagnitude T-0- 10 K.

For these conditions, the Debye radius D = [4,iinc 2(l+Z)/KT]-  is 1) = 6.901 x

l 0 8

[T/n(O+Z) - 10cM, i.e., is smaller than the atomic dimension and the number

of particles in the Dubye sphere would be ND 4ni) 3/3 -- 1 for ),10-6 cm and

nLO-4 ci 3 . It is seen that the concept of l)ebye shielding completely breaks

down, and statistical theories containing the Debye length as a characteristic

parameter would be physically meaningless for high density plasmas.

The nonideal. behavior of plasmas is determined by the interaction parameter

which is the ratio of the Coulomb interaction energy .-Ze2n 1 /3 and thermal

energy KT,

ze 2 Z11n1/3 /KT = 1.671 x 10- 3 ZnI/3/Tr.(1

20 1024 -3 4 o
It follows that 0.5Z < y 15Z for 10C0cm- <1 cm and T -- 10 K. For

y I , the nature of the plasma changes from a "thermally expanding" (y-1) to

an "clectrostatically contracting" (y>l) plosna. For y>l, the collapse of the

p lasma due to Coulomb attraction between electrons and ions is inhibited by the

Fermi pressure of the electrons, i.e. by the quantum mechanical exclusion prin-

ciple. Thus, in the region 0 <y y the plasma undergoes a diffuse transi-
c

tion from a nonideal classical plasma (y i 1) to a quasi-crYstal l i-nC plasma

(i ~ " y ), with an incomplete orderlrig comparable to that of a liquid.
c

An uinderstanding of stror gly non ideal plasmas hIas been at tempted via the

(6-14)
mOdelI ( discrete interacting parr " cles in a dense gas .... . For the above

reasons, however, it appo;irs to be a more reasotiable procedure to calculate

...._2 2 L .-,I
I- I I I l I Il--il- - . . . "- ,



ft6

th li thernotlnanIlictun fIlt ions of propc'r floin i do; 1 1I 1.i:;mias I i I Lite 1) 1 t II rec ol

aLC et iy ef VIlectLron al'''A ion osi' iltons. I h ippuIch 11 the f ree inter-

action energy is due to the stat ic Couilomb inter~wt ionl of the electrons and

ions in thle ir "eQU ill) riurm pos itionls s'I C lad] ig erg)and their oscil latLion

one rg ies abhout t ie equ Ii i fir iIII nii OS i. I ii s ( ) 1 C~IRi e1ergiCS)

S i Ilee. the' ) LrSInTI x'O I UIIe V coot :1 I ii' N C I ee' -l.':~ tid N//, i mis, t 1w' r( ex4 i st

3N (high-f reqliryt- branch) mnd 3N/Z (l0W 11 IIeneY IC J!ne) iractcrj sti, f re-

beutnk i Cs of oI ng i udinal use ii k atim). . I'm'i pl asmai~ use i ,tar of :r-((el n y

W a 011Ni have tie unergy (n *+ '.) ,r' , _ ,, 2,., bthle F,'ig ki

of a plaisma state with 11 plasnsins of Jreqneia'v

where {i designateS thle cnt ir iSet at i ye) elgeof rtequnics Ac-

cord ingtly, the part iti on func tion Q of rh t i ongi tiid Lnal p] asma oscil iatiuoil is

-E i /N ' _ iI 1 /' (3)

Firom Q , thle thle rmodynamric funictions Soc(- IS thle p res '-iire , imertial ene igy,

clt i-0py , etc. , are derived in the usual way, e~.,the Itee energ!y Of thle

jki mon; is5

- KT In QI = 1KT! In ( I-Cl i )(4)

Ili tilie I imilt V' - ,lie dI scrc te, e igol f r qeqnis w ark, I 'pk[aed 11v C en-

t i lliMIS oneus, u(k) , in accordance with the u.i spersion law. fur ;pace cl~rge

Waves of- waive length .2nj/k, (I ' k .- k.

1. u t u se i[Ia Lions. 'lIT i lifeqec branch aof- the spacecag

wives i ; diii' to lollgi tiid ilt;il I ci(tril 0'1 Iili Ilns . iii' ir I rerileliCy j5 fotr

17)
clssi al(a n) and completel v degenerate (n 11) electrons given by -

%) I (i !4T)/ - 1 : -e
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t, =j [I + rj(~ kre ) I, n1 "'u (6)
p

whe re

o' = 2 (2 'nnKT/h') ;/2 (7)

(41Ine-/m)

r e _ /, (9)

are t ie critical. electron density, the pLism.-i f ri-tlelicy, and

the mean electron distance (K = c Ic of the (locCrons, nnd w isC- p \)

their mass). Since k m 2 7r/r (oscillations with r are

physically inconceivable), the electron oscillations propagate,

W= O(k) - a , in nonideal plasmas.p

2. Ion Oscillations. The low-frequency branch of the space

charge waves is essentially due to ion sound waves. Since the ions

are presumed to be nondegenerate, the frequency of the ion oscillations

is given by
-1-7 )

. (k) (v .KT/M) $k (10)

where

W(k) [1 + Z(K-/Kj) n n , (11)
I+ (e /4-)%y (kr Y

6(k) , , " n , (12)

is a correction factor of magnitue-of-order 1, which shows the

influence of the electrons on the ion oScillati~ns (M = mass, . =

c /c of the ions).
p v

Ii wak I y non ideal pI asmas , y I, t he l ectron sound waves are

!t ongly damped for wave lengthS X 1), due to tr apping of the resonance

-ti
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electronis with thermal speeds colliparalble to the wavL speed. For proper

nionideal plasmas , y 1 1, the number ot pairt je le-! iti th lielbev(- sphre

4iYD 3/3 is no longer large compared with one anid D 10 -k m is smaller

than atomic size, so that thermal Landau damping i no longer feasahic.

For this reason, electron oscillations should exist for wave le~ngthI

X > r if r > D,

e e



SAlI' 'I WA1. THIINI~IhYNAMI'l

Inl thle p1lasm~a iiiitle r ceii idt i on , t lit'( i ci rin., antd ion; int eract

hroug1'h their long it udinal Coulomb I ie his (1 enive.rSe ti uct rolnagnet ic

2
int c'rzct ions are negi igibhie 1 4r 'F ilc Ill( t'lvet roils (n o and

ions (s = j) have t lie riinal velIocit ies c a nd( raildll c'olIl ect ive meanl

iiass Vt' let' it Ijes v sitie to their one i I I at or-y wave melois about the

cq'iilihriun positions, so tHint JJ (I c e 0 and , v. 0 where

%jitIiCo u I oni i ii t t 'r, ic t ion I lds t) o a I r e c onet ri t Ii( ) em 0f t1(

(o) + I I. + , (13)

E! I

(1o)

s. V acin th dison o- Xem ine >c inenr ethetIctrnadio' ith

1.u Freh e iim p stn s.~ F(0s)e fe'cnr v o h f('t'l n

j); r t sleII d e t od un hat c Eq. (9 n wke'; nn ti /4.82 x 10ra ion 1 a / 1 C

lheie ta l 11 ie ions beha d till p ielener g~e I" c Ass is% tI I den Fem roatn~isgi

(-I- the t ec c ic - v f t 1 d .; cI(,.t o



1. 0o NIKI 11 /2 (/Kl/ 1 (ik (14)

wherL

11 (i/KT)- r d __ ., /2()

0 C

11 = '(2nrnKT/h 2) -32U 01 /KTf) (16)

de fines thle Somme rfc Id integral 19, and It erm; ii m t h che~m ical

po ten tial ji = p (n , I') of the V letC rOn'; , reOSpI i I I lfFr te-

energy of the translationlal degrees of freedow of t hie ci a-nsical,

ideal ion gas is18

o)--(N/Z) KT ln[(2uMKI'/h)/() 1 1)

2. Quasi-Lattice Energy E M The equilibrium positions of tile

electrons and ions, about which the electrostatic oscillations

occur, form an electron "lattice" and an ion "lattice", with

18)aincomplete ordering. By means of thle Fwald method ,one

calculates thle Coulomb ineract ion energy of the quasi-cubically

centoertJ ee ,c t ron- ion la tt ices :I.-

E% -I:NK1 ,c 1.451 for -f1 (18)

As thle or'dering of the pl asma increases WIth) 'c a(f) l ai wenk

ftint io of suc tht asymptot ically x = 1 .541 for y -1 . Eq. (18)

indica tes that -E / N e/ r is of the order of thc( ane rag'

C-j inIteractio)n energy. For weak ordering, 'y --' I , it will he she(.:n-,

tt I n L 1/,
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3. Hfigh-Frequency Cont ribution F . SinCe the number of Longitudinale

modes with wave numbers between k and k + dk io volume V is V47Tk 2 dk/(2r) 3 ,

Eq. (4) gives for the free energy F of the high-frequency electron
e

oscillations of energy Itw(k)

k

F e /KT(V/2r2 ) = fe &il-exp[-ioj(k)/Kfj } k>'dk (19)

where

w(k) = w (l+a2 k2 ) '2 (20)
P

a c 2 /w 2 = (K /4f)(Z/Y)r 2  n < n , (21)
m p e e

a, -: (3/5) 2i2 9 ( - )/ 3 -- /3 (Z/')Ye n (>n22)
F p 207 6 n (22

by Eqs. (5)-(6). The speed of sound c and the Fermi speed "F

of the electrons are

c ( 6eeKT/m) , VF = 'K(3iT2 n) 'm. (23)

The number of modes in (0, k ) and V equals the number 3N ofe

degrees of freedom ot the electron gas, i.e.

(2' ) 3 V r 41Tk 2 dk = 3N, k (18r 2 n) 1'A (24)

0

Interation of Eq. (19) by parts yields, under consideration of

0 K I'V/¢,i2 = 3NKT, for the Frc energy of !.he high-frequen y plasmons:e

3NK'r l{ - exp[ (I+ak ) ' - F(--, 5ke )
KT KT

Wile re
Iie ,X akdx
, -- (26

KT KT (liw /KT[) (I+x 2 ) - 1

and

'ri,, /KT (4;T) (A /r)12 (Y/;) = b/(mKr) 1 2 (27)
e ..

[ I I II II I IIII I l "7 IM -
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ake  K e(9 2/4) (Z/y) , n12 1/ (28)ee

ak = 21/6,1/3(316f/2r5)(n/n)I/(Z/y) /2 , n n. (29)

By means of the successive substitutions, (f) x= ;nh,, dx = cosh ,d

and (ii) c = (,nw /KT) cosh,, dcl (Kw n/K'I) sbli d.,the Integral (26)

is transformed to

F(cpak) = (ake p  e (- (ei-) -d, (30)

E
p

where

c l=u p /KT, e = c cosh(arcsinh ak ). (31)p p e p e

Since the leading expression in Eq. (25) is tlhe logarithmic term, it

is sufficient to give for F(c p, ak e) t.e series approximation (AppunOx),

F(c pak e)/2 2(ak e )3C P

P5

-ME: 3/)2 )n m- + n) (32)_C~m
2)2 p Mt + n, E ,e < 3c (2

m = l n = O " n •' e p

where 5 c -r 3
-+n e p 3+n

( + n, (c-E m m 2 u e-mUdu (33)

0

is te inomplte gmma20)
is the incomplete gamma function- . Since in general y/Z 1 for

- r < 3Ep, the expansion (32) is useful where simple approximate

relations do not exist.
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4. Low Frequency Centribution F. With the number of modes in the

interval dk at k and volume V given by V4"k 2dk/(?if) 3, Eq. (4) yields for the free

energy F. of the low-frequency ion oscillations of energy flw(k)1

i

F /KT(V/21T2 ) = UI-exp[-1 w (k) /KTY l~dk (34)

0

where

w(k) = 6 (k)c k, (35)

cm = (K 1K/M) (36)

by Eqs. (10) and (12). The number of modes in (0, k i) and V equals

the nui,.ber 3N/Z of degrees of freedom of the ion gas, i.e.,

1

(2n)-V ' nk~dk = 3N/Z, k1 = (18rT2n/Z) - (37)

0

Partial integration of Eq. (34) gives, under consideration of

k3. KTV/6r 2 = 3(N/Z)KT, for the free energy of the low-frequency plasmons:
'r

F. = 3(N/Z)KT (i{l-expF- ki ]} -- ( )) (38)

where
k.

)  - [6(k)-k6' (k)]k 3dk (39)

KT j e(1icKT)6(k)k -- 1
e 0

Since the dispersion factor 6(k) is a bounded function varying very

little with k such that l< 6(k) :- (1+Z) for k -(0, ki), 6(k) can

be approximated by an average vnlue 6,

6(k)= U1, nfi . (40)

Since in addition the logarithmic expression is the dominant term in Eq. (38),

the integral (39) is approximated by

(c) = c3(e - ) - d-, (41)

0
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where

c = ficm6k/KT, E, -hcM6kI/KT (42)

G(£i) has the semi-convergent series expanstons, 2- -

S - + 1-+... << , (43)

G( = i + O[e il, i >> 1. (44)

This completes the formal mathematical aspects of the theory,

the physical implications of which require further elaboration.



45

APPLICATIONS

For applications of the theory to strongly, intermediate, and weakly

nonideal plasmas, it should be noted that the dimensionless parameters

Y/Z,-hw /KT, ak, and n/n occuring in Eq. (25) for the free energy Fe

of the high-frequency plasmons can not be varled independently. Since

both y/Z and e/r increase with increasing n and decleasing T,

-t40p /KT - (,e /r e)(y/Z)/12varies over a large n-T reion similar to (y/Z)l,pee

Eq. (7). Numerically,
-3.70 O 1/3 12 1

y/Z = 1.67Ix 0 nl/T, -hop /KT = 4.310x (-7n //T, n/n = 
2 .071x106 nT- 3-

ak = 2.219(-y/Z) - 1  , n n
e

ak = l.91O(n/n)'-(y/Z) n>> fi. (45)
e

=I4OK . ,121 -3
E. g., for T=1o K, y/Z,- 1 if n" 10 cm and 1, /KT > 1 ifp

<> i20 -3 3o I'll 3) etc. -u
n > 5x cm For T=10 K, /Z 1 1 if n 1 etc. Thus,< cm

for typical conditions of nonideal plasmas y/Z and -M /KT are of the
P

same order of magnitude. It is also recognized that in peneral

n/n - 1 if y/Z >> I, and n/n<< 1 if y/Z< < 1.

In Eq. (38) for the free energy F1 of the low frequency plasmons,
^

only one characteristic parameter 6 occurs since 6(k)- 7 - 1. By Eq.

(42), this parameter is

tcm6k 1  1/3 112- 1  5 .1/3 /n13
c CMk i _ =(18,r

2 ) Ki - 2.158x105 Z - 13 2 n13 << (46)
1 KT r.

1

where

A =-h/(MKT) r= (nlZ) (47)

Accordingly, for typical nonideal plasma conditions, it is c. I

Since A i/rC 1 (classical ions) although in .,(.neral Ae/re > 1 (degenerate

electrons) for y/Z > I or Tiw /KT > 1.
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The deviation AF of the free energy of a nonideal plasma from

ideality is by Eq. (13) due to the quasi-lattice energy EM and the plasmon

energies F

AF =E M + F s (48)
s=e, i

Since the theory of electron oscillationsl7)has not yet been

developed for arbitrary degrees of degeneracy (n' n), the contributioiNs

of the electron iscillations to AF in the cases n "n and n n have to

be estimated from the dispersion equations for n<< n [Eq. (5)] and

n > n [Eq. (6)], respectively. Fortunately, it turns out that

IFeI<<IAFI for y/Z> 1, so that quantitatively relyable approximations

for AF can be derived.

1. Strongly Nonideal Plasmas. By Eq. (6) the spectrum w(k) of

electron oscillations extends over a band Aw - w above the plasmap

frequency for y/Z - 1 since kr- - 1 and (n /3Z 1. Applicationfor /Z -> isin e e

of the mean value theorem for integrals to Eq. (25) shows that the free

energy F of the high-frequency plasmons vanishes oxnonentially fore

f P , i.e. y/Z :

F e/3NKT = (enui - exp[-c p(l+a2 k 2)If2]

-3 ak(a)
Ep e(a )/ e x4(l+x2)-/2dx 0, £p

0

0 x ak e (49)e

Accordingly, IFe/3NKT<< I for cp >> 1, i.e. , -y/- I. On the other

hand, the free energy of the low frequency plasmons is by Eq. (38) for

nondeg iterate ions
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F. 3(N/Z)KTLbzc -(1/3)]

3(N/Z)KTtib Y + &[(0 872/Z )3 (KIKT/ ) I - (1/3)}, e. . (S)
e 2 

1i 1

It is noted that 'y/Z -> I is compatible with i = 1c kIS/KT< 1 as

explained above.

Equations (49) and (50) demonstrate that the contribution of the

electron oscillations to the free energy is negli:izble in strongly

nonideal plasmas, y/Z >> 1. In this limit, the nonideal part of the

free energy is due to the quasi-lattice energy EM nnd the ion

oscillations,

AF/NKT - ay + (3/Z)Cny + (3/Z)n(CM/VB) (i/Z), y/Z - 1, (51)

where

VB = e 2 /ti, B = (18,T2Z- 4 ) 1/ 3 (52)

Note that Cny depends on both n and T whereas ji6c M/v B depends only

on T, where the Bohr speed is vB = 2.118 x 10 8 cm/sec >> = (KiKT/M)1/2.
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It is remarkable that the elIectron ose il I at io~ns confL rihlltc- lit tle

to the free energy compared to the ion oscillations for -y/Z 1. This

result holds even for moderately nonideal conditions, -y/Z > 1. Thus,

we difsagree with the formula "F = ne + 3NK'Tit(L0 /KT)" stated without
02_1

derivation for nonideal plasmias by Norman and Starostin? k according

to wh9m "all the vibrations have exactly the same frequency u

near tile p~lasma frequency w " The derivation of this formula requires

iie~)/K <~1 for the electron oscillations, which implies y/Z << 1,

but thle latter inequality contradicts their assumption w(k) =o =

since the frequency spectrum extends over a large band Aw > u, above

W for y/Z - 1. For these reasons, the free energy proposed by them

is not applicable to proper nonideal plasmas, y/Z 1, nor is it correct

for weakly nonideal conditions, )-/Z << 1.

2. Intermediate Nonideal Plasmas. For intermediate nonideal

conditions, 1 ', /Z < 10, the spectrum !,(k) of electron oscillations

extends over a region Aw -Oto I above ,) p y Eq. (6) s~ncc (n/n) '~y ~ f

kr k r -1. Also in this cac-, a relatively simple formula can he
ee

devised for the free energy. The logarithmic term In I , Eq. (25)

is negliible compared to that in P. Eq. (38), for -yb'. I since

nMk /KTfo y/Z--1 by Eos. (45) and (46), resp~ecti*vely.

Accordingly, tle nonideal part (48) of the free energy is for inter-

medi ate non ideal p lasmas:

v/INKT =- + (317)611 + (3Z)C;Z(i cM /v B -. (3/Z)'(r, i)
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For y/Z 1, the ions can be assumed to be non--dew ne rate , 1.ic =  ,Mki/K'l' ' --

by Eq. (46), so that the ion integral (41) redtces to

((A 1/3. < 1 5(4)

Since t • I and ak C L I [Eq. (45)] for /X 1, tlhe electront p ep

integial ( ) is significantly smaller than ;(_ .) = 1/3,

0 ak (aker,) ,..(i-e e/l-e) 1, y/Z 1. (55)
p e 1) P

The lower and upper hounds of F( pake ) have been obtained by means of

Le
the mean value theorem for the integral (i0),

i ,ak) (ake,) f - ( 2 )
p e e e p p

P

While for strongly nonideal conditions, the contribution of the

electron oscillations to the free energy is completely negligible,

this contribution is still insignificant for intermediate nonideal

conditions, y/Z 1, by Eq. (55). For more exact evaluations, the

small term F(Upak) in Eq. (53) can be computed from Eq. (30) or (32).

3. Weakly Nonideal Plasmas. Althouli the theory of weakly

1-5)
nonideal systems is well understood, it s interesting to investigate

whe;her the present model for proper nonideal pla;rias gives; reasonable

results in the limit y/Z << 1. For .1/Z << 1 it is ak e 1 by Eq. (45),e

and the spectrum w(k) of electron oscillations extends over a large

rgion Au -> w above w p by Eq. (5). The electron integral becomes forP P

ak > 1,

F( P,ak e ) = Cp (ak )- (ep x 3 x, y/Z << 1, (57)

0
ie. ,

V(' *ak )=2/I 3 a ) 2 2 ak << 1. (58)
p e 8 p e T (r pak e C . p e
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Although ) ak is independent of y/Z by E(qs. (27) .,ad (28), the expansionp e

(58) is valid since the electrons ace certainly i,,ndegenerate, , / " - I

for y/Z < 1, and

I= (4 1)/2/4)14 A /r 1, /r 1. (59)p A =e e e e 11 e

For nondegenerate ions, the integral (41) is (;(f i = 1/3 by Eq. (43)

since c. 1. Thus, one obtains from Eqs. (13), (25) and (38) for

the interaction part of the free energy of weak]%, nonideal plasmas:

.F/NKT = - y()) + (3/Z) tUy + (3//.)f'n ( /V )

+ 3 CA (c ak e ) - (I+Z - ), ./Z1 1, (60)

c ak - .
PC

In Eq. (60), a(y) is the Madel,,ng constant of the weakly nonideal

plasma with weak electron and ion ordering, u.(y) '0 for )-0. Comparison

of the term -ct(y)y(NKT) in Eq. (60) with AF =

(NKT)(2/3)i"/2(I+Z) 3/e 3n I/(KT) - 3/2 of the I)ebye--lueckel theory2 3 )

(weakly nonideal plasmas) yields the result

X(t ) = (2/3)Ir 1/ (1+z-) 3/2 ,Y , y/z< 1. (61)

The previous theories of weakly nonideal plasmas a not lead to the

logarithmic terms in Eq. (60) since they 'o not tl.ke into account the

ftff.ct:-; of electron and ion oscillations.

The presen ted theory is applicable to nonideal plasmas in the gaseous

phase (0 yAl) and the quasi-] iquid (1.-,-.y) phase. Whether the Eqs. (25)

and (38) are applicable to hot (T>1OOK) ,1ismas in the solid phase

( . cannot be judped at this time, since not no,,h is experimentally

I own about the latter, extreme state of !,ratter.



APPENDIX: Expansion of 0. (. ak )

The integral (23) is conveniently rv.'r ittL tL ill the forl:

(c,ak) (akc) I I(Ep, ) (Al)

where

p (-J) (e -1) dr, 0 (A2)

j p P

Since - > 0, i.e. e < 1, there exist.A the scries expansion,

(e= e c > 0 . (A3)

m=I

The subst itut ion, u c- c . du = d( , and Eq. (A'3) ti ansl orm Eq. (A2) to
--M E:_:pi " (u+2_11M

.- = emep p , du. (A41P " m= 1

U=o

For u , i.e., c < 3 , the binomial expansion,P P

(u+2 ) /'2 = ( ) 32 ( --I) 1 , u/2c < 1, (A5)(2cp Ucp )n 2cp ' P
n=O

is used, which reduces Eq. (A4) to the double series:

=F 3 5 ) 2

m=l n=0

F < 3, (A6)

where 5

5 T + 1 n u -,T + n 4ndiU (A7)
-- +n , (F_-c )m) m u du.
p *

0

is the incomplete gamma function, which is tabulated. 20 )  In an

;iwologous way, the integral (A2) can he solved for u > 2c , i.e.,

PP
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V, VARIATIONAL PRINCIPLES AND CANONICAL THEORY

FOR MANY - COMPONENT PLASMAS WITH SELF-CONSISTENT FIELD

ABSTRACT

'The Lagrangian L = Jf L(qs , qs ,/Dt, Vq )d3' and Hamiltonian

H JJ i(p, qs' Vq )d3' for many-component plasmas with self-consistent field

inLt.rat'Likns are derived. The canonical fields (r,t) and ' (',t) are defined
by p mv and aq/ t = n v, respectively,where n ( ,t) is the density and

S s s s s s

v (r,t) is the velocity of the component s, s - 1,2,...N. Based on the action

principle, the Lagrange and Hamilton equations of motion for the components (s)

alc )resented as functional derivatJv s of L amd H with respect to the canonical

momenta PS and qs" It is shown that the new formulations oi many-component

plasma dynamics have mathematical advantages compared with the conventional

v~iriat ion.l prink-1ples and hydrodynamic equations.
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I NTRODUCTION

Since the work of Clebsch - it is known that the space and time dependent

dynamics of perfect fluids can be derived from variational principles.

To-date, however, no variational prin'iple has been found the extremals of

which give the Navier-Stokes equations with viscous dissipation. A comprehensive

review of the most significant contributions to variational principles in fluid

6
mechanics has been presented by Serrin. - Similar variational princip] :i for

perfect one-fluid plasmas and magneto]iydrodynamic fluid. have been given by

7 8
Newcomb - and Zakharov. -

Herein, a new variational principle and canonical theory for perfect, non-

relativistic many-component plasmas is developed, in which the charged particles

interact through the self-consistent electric field. Interactions through

!:elf-consistent magnetic fields are neglected for non-relativistic velocities

v '- and temperatures kT << m c2 of the electrons. We show that the electro-
e e e

hydrodynamic equations of the componenLs s = L, 2, ... N of the plasma areI 9
derivable a, functional derivatives - of the Lagrange function

L = fff L(r,t)d3r and Hamilton function H = fff H(r,t)d r of the plasma of

volume '. The Lagrange L and Hamilton It densities are functionals of the

canonical congugate variables Ps and qs defined by Ps = IsVs(r,t) and
7 (7__- -'m mass n desit, v

qs/Dt = n (,t)v s(r,t), where m is the mass, n is the density, and v is the

(local) average velocity of the particlcs of the S-th component.

'le variationa1 principle and canonical theory for many-component plasmas

provides a tieoretical foundation for the analysis of classical phenomena such

as nonlinear electron and ion acoustic waves, space charge fluctuations,

electrt,static tuirhilence, and elect rohydrodynamic initial-boundary-value
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problems. The Hamilton function aud canonical lormalism were derived as a

theoretical basi.; for a statistical mechanics of liydrodynamic plasm,, fields

concerned with the evaluation of the free energy of electron-ion plasmas, which

are nonideal due to the self-consistett field interactions. The statistics of

fields and wave modes represents an alternative to the treatment of many-body

systems within the framework of the discrete particle picture.
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VLASOV PLASMA

The subject of consideration is a plasma consisting of an electron component

and N-I 1111 compolInts, which interact through the sel f-consistent electric field

;F.(r,t) of all charged particles. The hydrodynamic equations for each component

s of the plasma are obtained as moments of the Vlasov equation for its velocity

10
distribution function f (v,r,t), and are in abscn ce of col ]is ions (s=l ,2,. . .N):-

5

a (n m v ) + V (n sm v v ) - VP + ns es (i)
at s s s s s s s

1 - V-(n v) = 0 , (2)

a ->.

P + V-(P v ) =-(-l)P V.v (3)
at s s s s s

where

N

VE = - In e (4)
sl

+ 5-+5

relates the self-consistent field E(r,t) to its space charge sources n ( .5 s

is the dielectric permittivity). The charge of the particles is e = -e for the

electrons and es = Zse, IZsi = 1,2,3,..., for the ions (e is the el.mrent;iry charge).

The moments are the density, velocity, and pressure fields cf the s-th component,

n;(r,t) fff fs(rt)d v
~4

v rt= / (v ,r ,t)d3v
s n SIffs

4-aS

I) (r,t) = (2/3) ff ms (> - v )2 f (vr,rt) d3 v,

Furthermore, ii is the mass of the s particles and y s = cP /C v is the
5s 8 t

adiabatic coefficient of the s component (v is the particle velocity).

EquationIs (I) - (4) describe the macroscopic dynamics of an N-component

Vlasov plasma, - in which external magnetic fields are assumed to be absent,

II . -... . .. .
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and internal magnetic fields and binary corr.Latio,--t re negligible.

Maxwell's equations indicate that in the ;IhseIl'e of magnet ic fields, iI = 6:

V xE 0 ,(5)

N
at nE s (6)

s=l

Thus, the self-consistent field E(r,t) is longitudinal, and the displacement

(C 3E/3t) and convection (ns e s) currents annihilate themselves at every point

r,t). This effect was first noted by Ehrenfest in his discussion of

"accelerated charg.e motions without electromagnetic radiation". -- Typical

examples for accelerated charge motions without transverse radiation field

;Ire el ectron :ind ion acoust ic waves, and space charge turbulence.

Substitution of Eq. (6) into Eq. (4) yields the

conservat ion equiatLon, I ne /3t + 7- nev = 0, f,,r the space charge. The

latter equation is, therefore, not independent [ in addition, it is obtainable

by summing Eq. (2) multiplied by e with respect to s].

Due to the absence o[ i) external magnet ic fields and ii)binary interactions

(vinishing v1scouts and thermal dissipation), the pressure in Eqs. (1) and (3) is

isotropic. The closure of the Eqs. (1)-(4) is accomplished by setting all

higher order moments of the velocity distribution zero, such as the off-

diagonal stress components, Ni.. 0, the third order hea t flux tensor,
1]

(Iijk 0 0, etc. The resulting electrohydrodynamic or hydrodynamic Vlasov

equations are generally accepted in the literature.

I ~'
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EXTREMUM PRINCIPLE

The dynamics of the many-component plasma is now condensed into a varia-

tional principle for the Lagrange integral functional L = fff,,L(r*,t)d 3 r,, the

extrcmals of which give tie Eulerian equations (1) for the components s = 1,2 N

In this approach, Eqs. (2) - (4) are auxiliary equations by means of which the

fields n (r,t), P (rt), and E(r,L) can be eliminated from Eq. (1). This

elimination will be carried through after introducing canonical variables.

5
In analogy to the Lagrange density L(r,t) for nonconducting fluids,- the

Lagrange density for the many-component plasma with the. self-consistent field

E(r,t) is sought in the form

N P 0(

L(r,t) = j (3in m ) - E)
s1l sss s -(

It Eq. (7) is the correct Lagrange density, the Eulerian equations of motion

6
for the plasma components should follow from the extremum 

condition -

t?

6fdtfffL(r,t)d3r = 0, (8)

t

i.e.,
t N 5P

fdtfff In m V 6v + - m v2 6n _- - - cF 6E]d3r = 0. (9)
t 2s=l s s s s 2 s s s y I o

The Eulerian virtual displacement, o (r,t), of a mass element of the s-th corn-

ponent,

o (r,) = v (r,t)6t, (10)S S

vanishes at the initial (t1) and final (t 2 ) instants of the.variation of the

trajectory of the fluid element which occurs in the interval t1 < t < t

o (r,tI a (r ,t2 =,



59

and is tangential to ttie planes dA bounding the plasma at r = s:

o (r,t) "dA(s) = 0. (12)
S r=s

The viriations of the fields of each component s are given as functionals of

its displacement a (r,t):
S

Do3o -+ + 4

s + v "Vo -oVv , (13)v S S S s
s 3t

gn= - V.(n 4 ), (14)
S S5S

6P= - o .Vl -I P V0 , (15)S 5 S S 5

E =- E n e16)

s1l

Equation (13) is obtained by setting the variation of the Lagrangian velocity

equal to the substantial derivative of the Eulerian displacement. Equations

(13)-(16) result directly from Eqs. (2), (3),and (6), by means of Eq. (10).

Substitution of Eqs. (14)-(15) into Eq. (9) gives

t 2 N D
N Gs + V- * 1i=sV ( s s

fdtfj [n inm v - + v Vo -0 ) - 2, n (nt t s.- ,' . • s s s s 2 s

+ - -(a VP + Y P v.) + n esE.ns]d 3 r 0 (17)
Ys- f s s s s S S

By means of partial integrations, Gauss' integral theorem, and the surface

condition (12), Eq. (17) is reduced to

t 2  N

fdtfff X [ (n m ) + V'(n m v v ) + VP - n e Ed3r = 0 (18)t S s1 l sSs
1

Since Eq. (18) is zero for arbftrary variations u , s = 1,2,...N, the integrand
S

in the bracket must vanish a'. any point (r,t) of the plasma. Thus, the Eulerian

equations of motion (1) are obtained for the N components from the variational

Lo- ? ==-7--aL..
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principle (8). This completes the proof that Eq. (7) is the correct Lagrange

density for the multicomponent plasma.

The Lagrange density L and the Hamilton d.nsity H are not only functionals

of fields of r and t, but also depend, in general, explicitly on r and t. In the

following canonical theory, the explicit r,t dependence need not to be formally

indicated, since the virtual displacements constructing the varied paths are for

constant r and t.

* I



61

LAGRANGE EQUATIONS

!n the Lagrangian formulation of many-component plasma dynamics, the

Lagrangian L = JJL(r,t)d3r is expressed as a functional of the fields qs(r,t),

which will be shown to form with the fields Ps(r,t) canonical variables. These

are defined by, s = 1,2,.. .N:

= my, aq /3t = n v (19)Ps s s' a s s s

Note that p is proportional to the velocity field v., whereas qs is a t-integral

functional of the particle flux n v . Integration of the auxilary equations (12),

(3), (6) (Eq. (6) is equivalent to Eq. (4)], and Eq. (19) yield

n S= v - V'q) , s =V S (20)

PS = P so 0O- Vq )/n so (21)

+ + -i +
E =C -C esq, es c , , (22)

5 0 5S S 5

v = (aq /at)/(v - V.q (23)

P SO' n SO' Vs and ts are constants with respect to the integration variables.

Substitution of Eqs. (20) - (23) into Eq. (7) gives the Lagrange density of the

plasma as a functional of the qs,

L L (q 3 3t, v.q s) (24)
55l S 5

where

(aqs/at)2  P v - )q - - 1 ()LO s I'qm -2 ( - co esq s ) (25)
L = ms - i (  n 2? s o q)

sV - Vq s so

is the Lagrange density of the s component. Th~e Lagrangians of the plasma and
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its components are given by

N
*L = L , L = Jf d3 . (26)

S S SS=l

The fields ps and qS defined in Eq. (19) are canonical variables siace by

Eqs. (24) - (25)

+ a i aqs / at
Ps- m S (27)

S ~3~j/a3t) V - Vq SSa(q s s 'q s

Thus, by introducing the canonical variable qs, L has been decomposed into

the L ot the individual components. Note that the original Lagrange density inS

Eq. (7) does not permit such a decomposition due to the coupling of the components

by the common, nonlinear field energy E E2/2.o

For the Lagrange density of the form of F,q. (24), the variational principle

in Eq. (8),

t N 2
,f dt fff Ld3r = 1 6f dt fff L d3r = 0, (28)

beecomes, since the L are independent for s = 1,2 .... N,s

t2

6 f dt fff L(q, ) qs/3t, Vqs )d3r = . (29)

t

Hence,

t2 a s  -, 3L (Iq a

f dt fff [-.,qs + - 6(>--+ -__ 6V.q s]dr 0 (30)

S aq ( /at t Vq

where

+

qs= (aq / )t)6t = nV6t = nsa , (31)

(r ~,1 .), = 6qs _tr~

6qs (rt)= 2 (rL) _ dA(s) 0, (32)

-7'-
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by Eqs. (10) - (12). By means of the partial integrations,
>tt 2 AL A]q Le L t2 t 2 1 ', ss , -)dt [ . 6 I - dt, (33)

a(aq /at) (aqs /at) t 1 (aq S/t)

a )L Lql . dv. r )q , .d, - f • a (--.--)d r, (34)
s- - s ss Vq2 av-q 3Vq s

and Eq. (32), the extremum principle is reduced to

t 2 AL L sL

JdtfJ[~t- s -- - V(----s " )]. qd 3r = 0 (35)
3t . st 3q a q sat) aV.q s

The condition for the vanishing of this integral for arbitrary 6qs leads to the

Lagrangian equation of motion of the s component of the plasmrin:

a3 L aL
3 s s S -*

+ V(----) = w (36)at aqs;t /) s
.O S q s  T qs

where

iq / t aq /3t
- mV 1  (37)V~q -s

s --Vqs

SSisavector field pcrpendicular Lto q, s q 0b q 3). I sntdta

the extr.mals of Eq. (35) are undetermined up to fields

w i 6is(W m v X g X v for v -Vo).S 5 S SS S 5 5

In terms of the Lagrangian of the mul.ti-componcnt plasma, E'q. (26), and

9
Junctional derivatives,- the Lagrange equation (36) assumes te most general

form,

3 1I 61,
w (38)

at ,(3 /3t Sq

where
, L aL 6L I

4s- -7( - s )S (39
Sq +-0 -.. . . . -.. (39)

S s  3I s  3V'qs 6 (3qs/at) (q 0 ht)

/.A
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Sub,,;tit ut ion of L fuorn Fq. (25) injto 1iKq (30) ill(IC*d yijlds(. the Eule (rtiai

cq4uationf (1) , Since~ 12V (v s) -S x Vx v Vv
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tAMI LTON EQUAT IONS

Another importauint tormlo]iation oI the dyn;u i cs o(f uiY ny-conpi-lnt a *r.a is

obtained by means e1 the !tamiltoi 1 ; m] S1 C"l*' ae p and qs are canonical

momenta, the Hamilton density of a component s is

S= • L (40)

i.e.

; 2s P o v - V'q s L

s (V s  Vq)p + ( s -- ) + - -L e q (41)
2ms s s Y nl 2 o s

by Eq. (25). Accordingly, the Hamilton density of the plasma is a functional of

the form

N
ff = H (Ps , qsI Vq )" (42)

s=l

The resulting Hamiltonians of the plasma and its componcnts are

N
Y Ii, ii = fff H d3 (43)

Thus, also within the Hamilton approach, o decomposition of the Hamiltonian

II into component Hamiltonians H is achieved, each It depending only on the
S 5

fields of the component s. This is quite remarkable, since the various components

s interact through the self-consistent field E(r,t). The decomposition is

physically possible, since the electrLc iiel!s of the different components

superimpose in a linear way.

The Hamilton eqoations of motion of the components S follow from the action

principle (29),

t.) t 2 )q s 4 -

6 f It fff (p; .t - H )d-r 0, (44)
t1  S

t &IdI



(6

which gives, since the Hamilton density is a ilunction of tlh form

Is s (p' qs' V'q, I

2 Dq 3H q ;jif Al

6dt + ,s ) 6, , s  , dl = 0 (45)
t P s q S V qs

Int,_.rc:iange of the sequence of variation and differentiation and partial inte-

gr.itions,

t') 6 t2 t2

f j " s dt=[ ; s.q ] - S. s  " q dt, (46)

L II L~ lt

1H ;)H aH

fff s V.6d3 = _ dq 30, - fff Sq "V(- S)d'r, (47)
S2 DV.q aV-qsV.q

where the variation 5qs satisfies the condition in Eq. (32), transform Eq. (45)

to

aq s H ap H all

J dtfJf {(-t-)-- - -- t- + - - V( -- )].6s}d = 0. (48)
tI  v aps  3qs  DV'q s

The conditions for the vanishing of this integral Cor arbitrary variations

6 Ps and 5qs gives the Hamilton equations of motion for the plasma components s:

S 3s

Sq 'UH
' t (49)aPs

Dp sais al s s
at +-

qs SV q s

where

w =-p x V x (51)
MS

-j- -+ * - -

is a vector field perpendicular to 6qs = n sV st, i.e.,ws.6q = 0. As abovc,

w is determined from the condition of rotational flow (W - for V x v

S S
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By introducing the hlami 1toitian tit- the p aa El. (46) , and t inct i .a1
9

der ivat ives ,- tihe 11amilton equations (49) - (50) are brought into the most

general form,

qs 6 H- (52)St -

Ps

op _ S (53)

where

6H s 5SI s-s=- = -V (-- (54)

' 4Ps Pqs 6qs aqs "3V" qs

Evaluation of Eqs. (49) - (50) for the Hamilton density in Eq. (41) results in

Eq. (19) and the Eulerian equation of motion (1), respectively.

CONCLUSIONS

Comprehensive Lagrangian and Hamiltonian methods have been developed for

many-component plasmas with internal interactions through the self-consistent

electric field. The theory is based on the Lagrange density (26) and the

Hamilton density (41), and the canonical variables ps and qs defined by

ps = ms and t = nv. respectively. In the limit of a single component

(N=1) and vanishing Coulomb interactions, the corresponding Lagrange and

Hamilton equations of motion for an ordinary neutral particle gas result.

The canonical theory presented reduces the coupled partial differential

equations (1) - (4) for the fields v (r,t), n s(r,t), P (r,t), and E(r,t) to

a single partial differential equation for tie canonical field q s(r,t). The

fundamwntal ILagrange equation of motion is
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(jqs/Dt a)s/t 3'1' t

M [ , -- -7,9 + V : (- ( --s )1I

t - V q -V.q-. Vq
s "s q S V - qs

P /n + 
s  - - ,

s so V(v - )V-) + e(c- C e q (55)
s S S S 0 S svs - V q s

by Eqs. (26) and (36). From the solutions qs (rt), =1,2,...N, of Eq. (55),

the original plasma fields are obtained by means of Eqs. (20) - (23). The

mathematical advantages of the theory presented are obvious, in particular for

plasmas with several components. In comparison with the previous formulations

of variational principles in fluid mechanics 1,3,4,5 which make use of an

excessive number of scalar Clebsch parameters, the present canonical theory in

terms of the canonical vector fields ps and qs excells in mathematical simplicity.

5

(



69

References-

1. A. Clebsch, J. Matheinatik 54, 38, (1875).

2. H. Bateman, Proc. R. Soc. London Ser. A 125, 598 (1929).

3. L. W. Hlerivel, Proc. Cambridge Philos. Soc. 51, 344 (1955).

4. If. Ito, Progr. Theor. Phys. 13, 453 (1955).

5. F. P. Bretherton, J. Fluid Mech. 44, 19 (1970).

6. J. Serrin, "Mathematical Principles of Classical Fluid Mechanirs", in

Handbook of Physics (Springer, New York, 1959), Vol. III, Pt. 1, p. 144.

7. W. A. Newcomb, Nucl. Fusion, Stippi., Pt. 2, 451, (1962).

8. V. E. Zakharov, Zh. Eksp. Teor. Fiz. 60, 1714 (1971), [Soy. Phys.

JETP 33, 927 (1971)].

9. J. Rzewuski, Field Theory, (HafneL, New York, 1969), Pt. 1. The

functional derivative 6F[T(x)1/6P(x) of a scalar functional F

F['f(x)] is defined by [6(x - x')=- Dirac 6-function]:

UFLP(x)] _lmF['Y(x') + T~ 6(x - x')] - FI'Y(x')l

10. A. A. Vlasov, Many Particle Theory and its Application to Plasma.

(Gordon and Breach, New York, 1961).

11. P. Ehrenfest, Phys. Z. 11, 708, (1910).



70

V1. DISTRIBUTION FUNCTION OF TURBULENT VELOCITIES

ABSTRACT

The Hamiltonian H and Hamilton equations of motion are derived for

the Fourier amplitudes p and q of the canonical conjugate fields p and

q delined p = mv and aq/t - nv, where v(r,t) and n(r,t) are the velocity

and density fields of ideal, compressible gases in the state of fully

developed turbulence. A Liouville equation is presented for the

distribution function f(p,q;{ }) in thc multidimensional phase space

formed by the scalar components of the set { } of wave mode vectors

p and < . As an application, that stationary solution f - f(H) of the

Liouville equation is calculated, which maximizes the turbulence entropy.

It is shown that the distribution of the velocity and density fluctuations

of compressible gases is Gaussian in fully developed turbulence, in

:;ret-n lnt with the experiments.

,, -- :.i i_'7- -7 - "
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f NTRODUCT ION

The turbulence problem has aroused the inter( st of many celebrated

1) 2) , i 4)
researchers, such as Reynolds . van Kirm;n2 Taylor " ', ileisenberg

5) 6) 7)
Kolmogorov ,Prandtl , and Frenkiel , to name only a few. In spite

8-10)
of all progress made to date . many experimental observations on the

turbulence phenomenon are still unexplained from first principles. One

of the most elementary experimental results is the Gaussian velocity
2/ -2) -*

distribution - exp(-v /c ) of the turbulent velocity fluctuation v in
11)compressible gases. The CGussian velocity distribution of fully developed

turbulence is a fundamental fact as the Maxwellian distribution

1 -2
exp(--iv /KT) of the molecular velocities v in statistical equilibrium

gases.

The Maxwellian velocity distribution, which is the result of many

molecular collisions, is independent of the molecular interactions, which

have brought about the statistical equilibrium. The experiments indicate

that in fully developed turbulence, the distribution function of the

velocity fluctuations shows only in the far-out wings iv small deviations

11)

from the Gaussian distribution. Apparently, the distribution of the

velocity fluctions ii stationary turbulence depends hardly on the viscous

momentum transfer, which is negligible for the velocity fluctuations of

large scale X- but qignificant for the velocity fluctuations of small

scale A-0, concerning the sustainment of the turbulent state since

V v v k(A = 27/k).

In other words, the Gaussian distribution of the velocity fluctuations

in fully developed turbulence is rminlv sustained by nonlinear mode coupling

of the turbulence elements of diffrent w;ive vectors k. For this reason,

it should be possible to derive the turbulent velocity distribution from
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a stat ist ical hydrodynamics of thie turbulent t luid not ions, without taking

Viscosity into account. By Fourier analyzing the canonical conjugate

variables p(r,t) and q(r,t) of the turbulent gas, it is shown that the

Fourier amplitudes pj,.(t) and q-()satisfy Hamilton equations of motion, i.e.

the raindom wave modes k behave like quasi-particles. Thiis makes it possible

to derive a Liouville equation in the hyper-space turmed by the scalar

components of the set {p,, , qI(*. From this fUndaimenta] equation, the

quasi-Caussian dis tri bution for the turbulent ye IOCi ty F tc tuat ions is

derived as that stat ionary solIut ion whichi naxi ml zes the en t r py of

turbulence.
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WAl I LTON EQIUAT I ONS

In tile statistical turbulence theory to le presented, the effects of

viscosity are disregarded so that the random velocity ffeLd v(r,t) of the gas

is irrotational, Vxv=Oi, in the absence of externai. forces which could

artifically produce velocity curls. The condition I Vxv=O defines longitudinal

or so-called "acoustic" turbulence in compressibl e gases. It represents

a good approximation for the treatmnt of certain turbtlence phenomenon,

such as the present cal.culationof the turbulent velocity distribution.

The basis for the centinuuin-stat is t jci II cons ideratioiis form the Hamilton

equalt ions of 1ct ion for the compres sible, nonviscots gas. If v(r,t)

and n(r,t) designate the viocity and den:Aty field of the gas, respectively,

the canonical conjugate fields p(r ,t) and 4(r,t) of the gas are defined by the

proportionality (n=mass of gas molecul e) and functional relations, respectively:

p= mv , q/t = nv (1)

The lHamilton equations of motion and the Hamiltonian 11 of the gaseous system

3-* 13)
of vol.ume l= ffM d r= L L L are given by:

J q =611
t (2)

^) 64 (3)

Where r
31 H .2 0

I I f( dr H - -Vq)p + ... (4)
2m '-

and

11 _ 1611 i _bu

det ines the fIunctional det ivatives1/) [H/; q C) since i ( pV-q) by Eq.(4)1.

In Eq . (4), 1y ( ) C Vc ) is the ad itbt i f Ccf fiic nt, 1) and n



74

reference values of P(r, L) and n (rt) ] and 'v ;ire cons taIts obtained through

integration of the polytropic energy conservat ion and continuity equations of the

gas, respectively.

Since n(r,t) and v(r,t) are random turbulent fields, p(r,t) and q(r,t)

are represented as complex Fourier series,

p r~t = (t) exp (ik.r), q(r ,t 0 q(t) exp (ik-r), (6)

where {k} {k}

2L ' , L x~y~z -- o=j , \V = 0, ± 1, + 2, ..... ± V (7)

X Y

are the discrete eigenvalues (S2<-,) of the wave vector k. Since the minimum

wave length A = 2i/k_ is of the order of the mean free path, f, one has

v_ _[L/f]>> 1 for f-L.

Hamiltonian equations of motion similar to those for the canonical-

conjugate fields p(r,t) and q(r,t) can be derived for their Fourier amplitudes

p1(t) and q-(t), i.e., for the individual. wave modes. By Eqs. (2)-(6),

__l_ = (( k~ .aH d3 ' e-ik '7  
-

+ "  d3r = Qdq/dt (8)

,and
- r' 

(8)d3 Jfe-k'rd"

-2dp/dt , Dr(9)3f- V +k r r

since /fV.A d r = 0 if A is expandable in orthogonal functions e ( = unit

tensor).

The canonical equations for tile canonical-conjugate amplitudes PlO(t) and

qi(t) of the individual wave modes k are by Eqs. (8)-(9):

1. dli (10)
dIt -

and

dq 1

= - ---
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Equations (10) and (11) represent a complete system of coupled nonlinear

differentia] equations, which are antisynmaetric in the k indices. These

canonical equations determine the temporal development p (t) and -q(t) of
ik r

the wave modes k of spatial structure s = e

In Eqs. (10)-(11) the canonical equations of the wave mode dynamics are

stated in complex form for the conjugate variables

p4 = P- + i P, R= real (12)
k k 'k kl

q= Q- + iS- , Qj, S- = real (13)
k k k

so that

p = + = (1/2i)(' (14)

q- + q s (1/2i)(q-q_) (15)

since

p= p-, qj = q_- (16)

for real vector fields p(r,t) and q(r,t), Eq.(6). Substitution of Eqs.(12)-

(13) into Eqs. (i0)-(Il) yields the Hamilton equntions for the real and

imaginary parts of the canonical conjugate mode amplitudes:

dP dR-f
k I iH k 1311 (7

= (17)

at Q 3 dt Q a--
dt k

dQ, H g

k k 1 l(18)

k dtf 7



76

1,10UV ILLE EQIATI ON

The existence of the canonical equiations (10) and (1I), which are

analogous to the canonical equations of a miany-body sy;tem, indicates a

quasiparticle behavior of the individual wave modes. For statistical purposes,

let a large number (ensemble) of similar, turbulent gaseous systems he

introduced (each containing a set {0 I of wave mode.; or q,. isipajrti cies 

in the multidemensional phase space formed ly the real. and imaginary part';

of the Fourier vector components p ,; and qk-, (i=1,2, ) of the entire set
ki

{kidefined in Eq.(7). The number of gas systems, which have their phases in
6-)- 6-1

the vo lume element ii i(d p6 jd q14) at the point (pc, q<;{k}) of the phase

space, is given in terms of the density in phase space, f=f(p*, q-, t; (I}), by
+ - 6- 6- ,

dW f(p-, qk*, t; k} ) !l (d Pd q ) (19)

ik
whe re

6 3 3 6 3 3,
d . = d PIdR, d q->= d Q-d S-, (20)

k k k k ~ ~

in accordan.te with Eqs. (12) and (13). The phase-space density satisfies; the

cont1iiuity eq uation in phase space, since the number of plasma systems in the

ensemble is conserved.

f + (V f) =0 (21)

-t (k) (k)

where
_- (Pk dq-V'oU (22)

V i} { } (23)

The cnonicil equations (10) and (11), which determine the motion of any

point in phase space, indicate that the phase-space fluid is incompressible,
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IOCAUStC (11 this p1oi)ertv, tile continitty 'qut ion (21) i;ut be brought into the

f orm of the so-ca led Liouville equation:

, 77 -_ . (25)

1k k

Thiis ft udatentil equat ion desrihs the temp ill development of the distribut-ion

in phase space. it extends stat i st ical mLchoii s , ,; , conti nu: I il

raldom motion.

The |lgmiltotlin 1 H in Eq. (4) is an inva ri:o t [ - a nond issipatiye gas.

rhe steady-state solutions of Eq. (25) ioo tions (,f H:

f = f(11) (26)

since

__f I. '/--tH OH 311 1It 2 f
if ,- A [---) 0 for -=f (1) (27)

1n applicatlions, the compact complex f irm (2!)) of the Lionville equttioln

is mathematlcally preferable. In ters oF real veCt, r compnent s, Eqs. (22)-

(23) beCOme

k> (11i k dQ kJ (8V - cIt-- -- (28I: -,L t d t dt/

ik)

(29)
kkk

Snetl(has pc fluid is incompressqible, 0- }  0 by Eq. (2/4),

subs t it it ion of Fqs. (28)-(29) into the continui ty equat ion (21.) resul ts in

the Jiovi I le equ I ion in real notation:

: - I __ + I. 2l :. f 1.. : - " •

nltl



The SO ul tion of the Louvi 1 Ic eq ua tIofl per wi fIf ; thle de to rwmt lii ord' t I

mac ros copic p ropert Ies oi turbulIent ga ses a:u; i.ituml, I e av er;igeq . I'lh

stat 1 t I cal considcrdit ions are based on t ho cItie i -part iclIe uliaractc r o f rho~

~infd iid iia Wavc mon(us.



79

TURBUILENCE ENTI)PY

The state of stationary, fully deteloped turbul]ence is one of maximum

probability W. Since the entropy of a turbulent sys;term is a function

S -(i W of its probability W, the et rpy of turbulence must assume

an extremum in stationary state.

The entropy associated with the turbulent modes of the gas is defined

as the phase space integral over the distribution function f = f(pk,q--;fkl

"S f* 6-*_ 6,-
S = -K ... f 6zf 1 (d pl'A id (1) (31)

where K is a dimensional constant. This definition of turbulence entropy is

in compI etc analogy of the definition of turbulence for a rbitra ry noneqiuili-

brium systems. 1
5 )

The ideaiized description of the gas as a continutim without collisional

dissipation is reflected in the time - indepencence of the tul-bulence entropy.

By Lqs. (3.), (21), and (24).

dS 6.6- 0
k (1+ b&f) + V • V,' f H4(d p-*dqj) = 0. (32).dt "k" 10 { k
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VELOCITY DISTRIB1;TION

As an application of the canonical theory, the statistical distribution

of the random velocities in turbulent, compressible gases Is calculated.

Let the turbulent gas be, on the average, homogeneous (h = n ) and at rest

() so that for the spatial mean valties

The gas is assumed to ye in contact with an appropriate other sy,,tem which

sustains sLationary, fully developed turbulence. The canonical conju1,t;te

fluctuation fields can then be expanded in the stationary Fourier series:

p(r) = (1exp i-r] 34)

where.

=e r r(35)

= r (36)
k JQ fq(r)exp[-ik.rd r(

are the complex, time-independent Fourier amplitudes of the real fields p(r)

and q(r):

p _= P q4 = q-* (3-')

The orthogonality relations for elementary vector fields of the form given in

the above Fourier expansions are

* ~ ~ ~ ~ ~ ~ -3-, f~- .+''P) " ff( k ,---.- - • ),exp[i (k - rd k'kk .(38)

By L'q. (27), the phase space density of a conservative gas (1I=E) in a

st;,t niry state i-; an arbitrary function of the Hamiltonian

ik, -fi(p , ; Ik I ] (39)

Si t. :t, the entropy of ttirbu en ce assumes an ext cmum(.;tate

P-" (31)



= - , ; i ') )~ ell)2( p ~d ",1 (/40)
k' f p k

Ak cord ing Iv, IWi dlAL-~c dist r i but il tvI (If) oI st-i t 1ulA m ii Uly df.'I E)pAA

turbulen Lne, is (1 tC1AiIntJd by t1C V~AVid LIOMII~ C(j4A~A! 140!

"'S -( I 6iI 1) *fl(dI i64d ('

fft~~ fl(d pd = 1)

f I

4f) 4'.I .0)l Vk ;II,!

I I I ':I t Idi( I !) i '

ifi
6 6

I k' iq k) ((49
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since v = a An evident bionomial expansion- wnd subsequent spatLil integration

gives, under considerati on of Eq. ('38),

[i1 + 1 kij I- 1-q~ (i ~11 h(p , (j k' (50)

whe re

k k

ok ++

cmit.li:,-; tile t eris 01t third and higlik.,r t- !c r ii t I l:,I t-i kr ijmpiitudes.. TI e

I ow. s HUH; inl Lq . ( ') h veI tile )IY- r ;Iti Iaerie

('. I Il ,, W. he )

I
1 1 t II it I .II t~ 1 (4. It - 'Tf) I CS5 S 4

( 'I 1! I k'~/ mt 1II) t~' ti *t it imir t i )i t i t n tIwo t i'r

I k,*l'-~ Ik.~12p - 2 ik'i*(k ~ .(~,q~ k

(IX I-1-11k (I I
I k

hi r'dwlg uc Il ,; epat ha avyr r.gce def fied hi Fqsa. a L- 5)~ phy.:;iia lv

Trr i Iliost rat! '.e icpresc-nt;AtiOi '4 the stat iumoiry turbulenIce dist ribut ion

is ob!tainied:

1(2 AlP vx + P11 -Iv 4- [Iy( ,/ ) ',l (,' (1, 1 {k '1) (55)

~ L~o ~ O~i~-I4(



whe re

C)p~'2 (f-l f~ [-} (56)

T1he pa rame ter ) O f the distribution, whichI has t he di mens ion lC a rcci p rocalt

energy, is given in termis (if the' total Imbutt-il iii iit1;gv I. (inltaiitled in

t I i' I I I Ict (It L I lls t II ro1u gh Lh Il e . L ti il)

lk

in \, iexw of Itle ni in-iI isa ion de! incd Ii '. (i) I1 r,- --I) r ison t- tIII'

iliit urblcl nt (I, thli.; it eiergy (I i I 'i - h . i

JAIj. ( '') i lid 1 t a t s t-; iat. t lic d i , L Ii jI)II i, f si' t 1a 1 5 1 t he I IrIh o n Ii

Ill ' i lit jioms ba~s t lic Ie o II w S ur, p riper t i :

ii) [li I,- Iist r i!ut jii 0i t ht, d ' it Ii l t i u t o

i -2 il I -) OH 0! t(99w i~ti )! ~

Ii (5 , . ,

I t i Iis , i h.; ire 1 i'; Iv it) i t l iit -ts' ii, I il ~ r r 1-.!

tlir p t vi ~' r I ,it I kl th Il It i I i iii .i '1t' 1u ws Iqg n'

.sj i Iimt I y sm.-i IIr Lthiin tIe I mIl i 1 ng s 'oflut (, r (-- t eLrmi inl tilt' exj'itn!siof

No rmalI d ist ribut ins o f the f orIMs g i 'em i n I'(1!. ('8) A(9 have bukiiu

obho i-ved in f inl Ily develIoped t ilm h':! onc ofCV 01COMpresCs i b I cit- * 1( ;.) Ipr i men ta I ~y

tft I distr1ibu-t ion ot tirbiii-ltit Vol eli t Its is obt ali ned by plott-ing the I reqiicncv

of Owth oce ureacCU (over- a1 ta rgcr time period)1' of am ye S nety s;ignal with

amplitudes bet:ween I and IvI + jAvI vs. lvI, iLe. by a tine-averaging process.
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i n the di stLribut ion tunctLon oil0f Eq. (5 5), th liIuan tit Ies v and n

represent spatial averages (Eqs. (52) and (53). This tormal difference

is, of course, no contradiction between e-xperimnent am!d theory, since the

time average is equal to the spatial (ensembi e) aIverage in fiil I'.

developed, homogeneous turbulence. In Ig I, the experiumentil ((o) and theo-

ret' ical I- distributions of the turbulent VOOiIlS:ire compare-d.

It. is seeni that the thieoretical1 C:lussjain dist 1ribkit ion of the Ltirbihlen

vOcO.i ties 'S inl UXCeHl et agreement wit tl~h- rc r~la dalt'

ThO theory p resen Lcd is liil Iy ide alifzed s ince vfscous ind the rw.gil

d issip~itioii in t he turbulenlt. ga., irc nit taiken, expil icitly, into a((wint.

It represents;, however, ai H rst attemipt ait ext-ending ,;tntist ical mechanics

to ravl';ceianuous mediai, such. j!; tui111enit gases. Ext ens ions of the.

ht-orv to inc]ade .iscou; and therrni d -ipi o represenlt. mainly

ma aIi cal probluems.
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VII, APPENDIX: STRESS RELAXATION NAVES IN FLUIDS

ABSTRACT

The Navier-Stokes equations for incompressible and compressible fluids

are generalized by inclusion of viscous stresb relaxatlon, as required by

kinetiC theory. Two initial-boundary-value problems of the nonlinear, peneralized

Navier-Stokes equations are solved analytically, which describe the propagation

of transverse or shear waves due to temporal and spatial velocity pulses v(O,t)

and v(x,O), respectively. It is shown that transverse perturbations propagate

in form of a discontinuous wave with a finite wave speed due to viscous stress

tol,,xatlon, whereas the conventional Navier-Stokes equations result in non-

physicail solutions suggesting a dLffustio process covering the entire fluid

wit; , il initt speed.



INTRODUCTION

The nonlinear incompressible and compressible Navter-Stokes equations

represent (quasi) parabolic and hyperbolic partial differential equations,

respectively. The former propagate signals with infinite speed and the latter

propagate certain signals with finite speed in fluids. In an infinite, homo-

gCiieuUs fluid, consider a small (linear) velocity perturbation, which is re-

presentable as the Fourier integral,
+o iLot - ik'r

\-(rt) f (k) e d,

over elementary waves of wavo length = 27/k and frequency w(k). If the

fluid is compressible so that it sustains both pressure (p) and density (')

perturbations, )p/ t = S a3/Ot, the perturbation can propagate, e.g.,
s

I
in form of longitudinal sound waves with finite speed c = (.p 0/ )' and

dispersion law

2 = c 2 k' + i(5,,/3 )k 2

s 0

In a I luid with a viscosity ,, ,i perturbition may also propagate in form

of , t lisverse or shear wave . it one api'L t 1 the curl opt ration to tile

iip , i ble' or coml)rossihl Navict'-.''i.s c'qu.it .on, a dispersion law is

1t, !1d tt Lith' Irinsverse pt uru1T).ti(nQ whici does 11ot replesle t a Wave

pli l'ntmitwiin but n ii periti ic lampin;- )rtu rs W. th

i - /f )k'

As is known, tl. ;aostir dispersien 1 iw is d1,2rivud from a iyperbol ic ,a e

.L ia tA ion, whereas tie d;imping coi;t.int for th' L r-ns v r,;e modes fo I I ows

from t he parabol ic vort icity equation (which is the same for incompressible

and (omp ressibl) e fluids). From experiments, however, it is established that

transverse perturbations (V x vk 1 k x v # ) propagate as (hyperbolic)

k



shear waves with finite speed.

It will be demonstrated herein that the (incompressible or compressible)

Navier-Stokes equations do not provide a correct duscriptioil of shear .taves.

The discrepancy between the Navier-Stokes equations and the experiments on

shear waves is resolved by introducing viscous stress relaxation, which leads

to a hyperbolic transport equation for ;hear waves in incompressible or com-

pressible fluids. For this reason, the transverse or shear waves represent

"stress relaxation waves".

As an illustration, two hyperbolic initial-boundary-value problems for

shear waves with stress relaxation are solved. The soluti,,ns of the generalized

Navier-Stokes equations with stress relaxation represent transverse waves

which are discontinuous at the wave front and have a finite wave speed,

c = (p/p T) 12 < - (T is the stress relaxation time). The first treats the
O

propagation of a shear wave into a semi-infinite fluid space, x -' 0, produced

by a temporal velocity impulse at th- boundary x = 0 (accelerated wall). The

second is concerned with the propagation (if a shear wave into an Infinite

fluid space, - - x " + o, caused by si spatial velocity pulse in the plane

x = 0 at time t 0. Both solutions are valid for nonlinear shear waves of

arbitraiy intensity.

w w mm.m w
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PHYSICAL PRINCIPLES

In conventional fluid mechanics, ) it is assumed that inhomogeneities

V.v. in the velocity components v. produce instantaneously viscous stresses
L * .1

Ii... Mathematically, this is expressed through the phenomenological "flux"

"force" relation

i. ;- .(V v + Vv v .
ij ij j i 3 k k ij

where i. is the viscosity and 6 is the unit tensor. In a real continuum,

however, velocity inhomogeneities do not switch on viscoas stresses instan-

taneously but in accordance with a relaxation process of characteristic time

T. By means of the kinetic theory of gases 2) and liquids, 3-) one can show

that the transport equation for the viscous stresses has the form of a

temporal (3/Dt) ]nd spatial (v.\) relaxation i, quation,

3-1 -I.1
I=(+v' -I "" (Vv+ 'd - -:Jr lij +  Vk"7kl j lij i j . iv 3 'k k~

This equation is approximate insofar as the the coupling 01 heat flows i

and stresses II.. and higher order terms in the derivatives of v. are1] 1
2d 23)

neg I ect .-- It has temporal and spatial derivatives : s required for a

j-t dependent field equation and is (;alilei covariant. If relaxation effects

are disregarded, it reduces to the static stress equation.

Thus, consideri.Lion ol viscous stress laa/iol ]ad:i to a reformulat, )n

of the conventional Navier-Stokes theorY ol iticompressiblt and compres.;ible

luids. In place of the Navi er-StokcH eq,,ions, we haivc til' hydrodynamic

equations with viscous stress relaxation:

(-t + v.Vv) - (- )

t + v. V, - pV~v (2)
a t

+ v.Vfl + (V + - ' v (3)
3t '



Eqs. (1) - (3) hold for incompressible (V'v 0) and compressible (V.v 0)

fli For nonisothermal systems, the transport equations for thermal energy

and heat flux have to be added to Eqs. (1) - (3). 4,5)

If andi can be treated as r-independent, it is mathematically more

convenient to use instead of the tensor equation (3) the vector equation,

3 + -M - I - - I()
-. + V.(v.Vi + T V.=-"!I (v4)

-ince Eq. (1) contains the force density V,11. If temporal and spatial re-

laxation of the viscous stresses is disregarded, Eqs. (1) and (4) combine to
-+ + V) 2 =-1,-

the classical Navier-Stokes equation, p(3a/vt + vVv) = -7D + V v+(!)/3)VV-v.

Equations (I) - (3) represent a hyperbolic system both in the compressible

and incompressible cases. On the other hand, the conventional incompressible

Navier-Stokes equations are parabolic. The corresponding field equations for

incompressible fluids are obt.ined by setting V-v H 0 in r-qs. (2), (3), and (4).
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INITIAL-BOUNDARY-VALUE PROBLEM FOR v(, t)-I'IJSE

A simple method for the generation of transverse waves in a vircoas fluid

consists in setting tile plane x = 0 bounding a semi-infinite fluid (x , 0,

S" ", I - 
"') into sudden motion v = v ll(t)e , where l(t) is the

leaviside step function. The resulting viscous interaction between the fluid

;ind the accelerated wall produces a cvrl n x ['] = e v(x = (),t) at the fluidz

suir face wiich propagates in form of a transver:;e wav Lhrough the fluid in

the x-direction. In this dynamic processi, thi- fluid velocity is of the form

v = t0, v(x,t), 0 so that V'v = Dv/3y = 0 and v-Vv = 0, i.e., the fluid

motion behaves incompressible (even if the fuiid is compressible) and linear.

Furthermore, v-Vfl = v 7)R/y = 0 since It has only a single component R = H(x,t)
xy

by Eq. (3), and Vp = 6 by Eq. (1).

Thus, Eqs. (I) - (3) lead to the following initial-boundary-value problem

for the transverse velocity wave v(x,t) in the y-direction propagating in

tle x-direction, as a result of the sudden wall motion in the plane x = 0:

v - - ,h1 ( 5 )
L xt

,311 + )V , (b)
)t .1 ;t x

v(x = O,t) = v H(t), t 0 , (7)

v(xt 0) = 0, x >0 (8)

v(x,t= 0)/:)t = 0, x 0 (9)

where 11(t) = 0, t - , and lI(t) = 1, t - + 0.

Equaitions (5) - (6) represent a hyperbolic system, from which one obtains

by eli mination wave equations for the stress component H -- H(x,t) and thexy

velocity iield v(x,t):

+l t -- =  -11 _27 (10)
'i' T St 7X-



and

3zv I Dv 1 (v+ -- =c3 11

wh re

c (d,/p 0 ) (12)

is the (maximum) speed of the stress relaxation wave. Both h.(x,t) and v(x,t)

satisfy similar (hyperbolic) wave equations with the same wave speed c. In

the limit, T -- 0 and c -> -, with c2T , I/ 0, Eqs. (10) and (ii) reduce to

parabolic equations, according to which boundary values of I(x,t) and v(>x,t)

would diffuse with infinite speed into the fluid (conventional Navier-Stokes

theory). Accordingly,only for T > 0 and c transverse or shear waves

exist in the fluid which reprt.;ent, t.refore, stre!ss relaxation waves.

According to Eq. (11) and Eqs. (7) - (9), the velocity field

v(x,t) = v ti(E,t) of the stress relaxation wave under consideration is des-

cribed by the dimensionless initial-boundary-value problem:

32 u +u 32u

+ (13)

( 0, t) H2 t > 0, , (14)

= 0 , (15)

) ( , t = O ) t D t = 0 , t 0 (1 6 )

where

u(Ct) = v(x,t)/v, = /c , ¢t t/T (1.7)

Equation (13) - (1.6) are solved by means of the Laplace transform

tlhnique- 6)Which gives

Lx -st ( , d 
l-(L,,s) c- Llu f,t)j 3' f uC~td

0

l ~ [0 ul L ((), t) ] f e- t
1(Os= L=u( ttt)1d3 -

C)
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Since the initial conditions (15) - (16) vanish, Eqs. (13) - (14) yield for

the transformed velocity u(C,s) the ordinary boundary-value problem,

d2u (S2 + s)u = 0  
, (20)

7-1

u(= Os) = s (21)

Since u(C,s) must be finite for C -* , the solution of Eqs. (20) - (21) is

-1 -(S2 + S)3
u(&,s) = s e (22)

The inverse Laplace transform gives for the velocity field the complex

integral Y+iCO

u(i,,t) = (1/21, i) f s- e- S ) e St ds. (23)

Y-iY

Hence,

u(,'t) = a(,t)/a (24)

where Y+io

= -_ sf - ( ,s)eS ds (25)2 Y-i

and

e(2,s) e +s) 2/(s2 + s) 1 (26)

According to a known inversion integral,6) the inverse transform of Eq. (26) is

f(F ,t) = Le[-(,s)] = 1 t 0 ( (t2 - 2)! ) H(t - ) (27)0

where I (t) is the modified Bessel function of order v. By Eq. (25),
t

(,t) = -- [s-1 T(,s)] = - L-[f( ,s)lJd

4 0

- f(',t)dt , (28)
0

i.e.
t _- '12

( )= - H(t - C) f e = I ( (a2 - 2 )1)da (29)

From this potential, the dimensionless velocity field is obtained as

U(E,)= H(t - C) [e f e (a2- (a- )da] (30)
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in accordance with Eq. (24). By Eq. (17), the corresponding dimensional

solution for the velocity field is

v(x,L) = v$(ct- x) {e
t/-i , l

+ (x12ci) f e-I" C2 (x-cT) 2 ] - ii( c[2 _ (x/cr)2]2)di). (31)
x/CT

Eq. (31) indicates that the transverse stress relaxation wave is dis-

continuous at x = ct, the position of the wave front at time t. At any time

0 _' t i , only the region 0 f x E ct of the fluid is excited by the wave,

since v(x < ct, t) > 0 and v(x > ct, t) = 0 by Eq. (31). The velocity signal

v(0,t) = v H(t) generated at the boundary x = 0 at time t is thus transported

with finite speed c = (p /po T ) 2 < - in form of a discontinuous wave into the

fluid space x > 0 as t > 0 increases.

Application of the asymptotic formula 1 (z) - eZ/(2rz), Izj >> I, and
o

expansion of z = !a2 _ (x/cT) 2]2 for large a-values in Eq. (31) yields, in

the limit T - 0, cT - 0:

v(x,t) e d F .12(r -  t)(

This is the familiar solution of the parabolic Navier-Stokes equations due

to Stokes.- ) Eq. (32) suggests that v(x,t) > 0 throughout the entire fluid

0 • x S - for any, no matter how small time t > 0. Thus, the parabolic

Stokes solution gives a completely misleading picture for a shear wave in

form of a diffusion process which spreads with infinite speed.

0 1 2
Fig. I shows u(,t) versus for t = 10 , 10 , 10 , with wave fronts at

100, 101 10 . It is seen how the perturbation u(O,t) = H(t) produced at the

wall = 0 moves in form of a discontinuous wave into the fluid sp;ice - 0

so th,)t an increasing but finite region 0 <_ F,. - of the fluid is set into motion

withl iricre;shng t. In the limit I , u(F.,t) I throughout the fluid,

0 - .
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INITIAL-BOUNDARY-VALUE PROBLEM FOR v(x,O)-PULSE

Another fundamental method for shear w:±ve generation mitakes use of a velocity

pulse Vo= V(X,0)ey generated of time t = 0 within a limited region lxI < 1x.

The decay of this velocity pulse occurs in form of a shear wave with velocity

field v = 10, v(xt), 0) in the y-direction propagating in the x-directions.

Accordingly, V-v = 3v/3y = 0, v.Vv = , and v.Vll=v 1iy = 0, since 1 has

only a single component H = f(x,t). Again, the stransverse wvve "behaves"xy

incompressible and linear, and Vp = 6 by Eq. (1).

As in the previous problem, Eqs. (1) - (3) give the wave Eqs. (10) and

(11) for n(x,t) and v(x,t), respectively. Hence, the shear wave produced by

the velocity pulse v v(x,O)e is described by the initial-boundary-value

problem:
2-v 1 3v=c2 2

a- 2 2 (33)

V(x~t 0 ) v 0 Wx , I (35

)v(x,t = O), t = w (x) • x _ (35)
0

where lwo(x)l > 0 is included for reasons (if generality. The solution of

Eqs. (33) - (35) is accomplished by means of Riemann's method, 8
-t/2 12.x+ct

v(xt) = -t/2 [v (x-ct) + v (x+ct)] + f Y(x,t,a)da} (36)

0 0 x-ct
where

(xt,c) = v (cx)(t/ 2 t) I I  [c 2 t 2 _( - x) 2 1 )/[ct 2 
- -

2_- V I t2)2

+ 1 [w (a) + v ()] I (- [c 2 t' - (a - X)21) (37)
c. o 21 o o 2cT

As a concrete example tor the initial conditions in Eqs. (34) - (35), an

initial. velocity distribution of the form of a Dirac pulse is chosen,

(x) = v 6(x), w (x) = 0, : , - (38)
0 0 0
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In this case, the general solution in Eqs. (36) - (37) becomes, in diiaen-

sionless form,

u(Ct)= e - t [6(E- t)+ 6( + t)

+ T1 ([t 2 - &2] )/[t 2 
- C 2 1+ I ([t2 ,2 ) '  t,

- 0, t, (39)

where
u(t) = v(x,t)/(vo/2ct), = x/2cT, t=t/2 T (40)

Eq. (39) indicates that the shear wave spreads in the space j6 . in

form of a symmetrical wave, u(- E,t) = u(+ ,t) due to the symmetry of the

initial conditions (38). The wave is discontinuous at its fronts = ,

which propagate with the speed

v(x t) = i c, x = ± ct (41)

In the limit 4 - 0, ct - 0, application of the asymptotic formula

I (z) e Z/(2irz)2 , ' zj >> 1, and expansion of z = [a2 - 2] for large t,-values

in Eq. (39) yields

- Ce-2/2t,
u(=,t) = (2it) 'O e/ w (42)

This is the corresponding solution of the parabolic Navier-Stokes equations.

Eq. (42) would indicate that the shear wave has the form of a Gaussian ex-

tending from C = - to C= +- for any, no matter how small time t > 0 (cor-

responding to an infinite speed of propagation). It is obvious that the

solution (42) is physically not meaningful.

In Fig. 2, the dimensionless velocity field u(C,t) of the shear wave is

shown versus t for t = 100, 101, 102, the wave fronts being in each case at

= t. Due to the finite wave speed c, tile fluid is not excited in the

region [![ > t ahead of the wave fronts. The shape of the wave is flat

bL _
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with relatively steep flanks leading to the discontinuous fronts. Thus,

the shear wave does not resemble the Gaussian of the parabolic theory, Eq. (40).

_
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CONCLUSIONS

A generalization of the Navier-Stokes equations is presented considering

viscous stress relaxation, which results in a physically meaningful theory for

transverse waves in viscous fluids. The fundamental speed of the stress

relaxation waves is given by c = (P/pTr), where p is the viscosity, p is the

density, and T is the relaxation time of the stress tensor. For any medium,9 )

it is c 'Cs, where c is the speed of the longitudinal waves, e.g.,

5 -1 5 -1c = 1.3x 10 cm sec and c = 1.5 x 10 cm sec for water at T = 20°C ands
P 1 I atm.

Exact solutions are derived for stress relaxation waves propagating in

the x-direction due to velocity pulses v(O,t) and v(x,O) In the y-direction,

respectively. For the geometry of these transverse waves, the nonlinear,

generalized Navier-Stokes equations become linear, so that the solutions given

hold for waves of arbitrary intensity. The solutions are discontinuous at

Lhe wave fronts, which is typical for hyperbolic field equations. The corres-

ponding solutions of the conventional Navier-Stokes equations indicate a

diffusion process with infinite wave speed, i.e., give a qualitatively and

quantitatively insufficient picture of the propagation of transverse waves

in fluids.

In the simplified stress relaxation equation (3) proposed, the term

i-Vv is neglected since it is of the order-of-magnitude of (P/zf)IV'[ 2 ,

which is nonlinear in the derivatives. It should be noted that the term

I[*Vv vanishes exactly for the wave problems treated aboveIVv= since V =

{O,v(X,t),O} and H has only a single component 11xy(x,t). For this

reason, the solutions presented are exact solutions of the P.,nlinear

Nivier-Stokes equations with viscous stress relaxation.

L =''i ' . . .. - •.... .......... ... ' i I in I i-"
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